Advertisement

Environmental Monitoring and Assessment

, Volume 171, Issue 1–4, pp 309–319 | Cite as

Identification of organic phosphorus compounds in the Bronx River bed sediments by phosphorus-31 nuclear magnetic resonance spectroscopy

  • Jingyu WangEmail author
  • Hari K. Pant
Article

Abstract

Sediment characteristics influence the distribution and bioavailability of phosphorus (P) in rivers and lakes. The objectives of this study were to identify P compounds in sediments collected from 15 sites along the Bronx River to get insights on nutrient transport for management of highly variable and modified ecosystems such as the Bronx River. The nuclear magnetic resonance spectra showed that the dominant P species in Bronx River bed sediments are orthophosphate monoester and lesser phosphate diesters and pyrophosphates (pyro-P). The P compounds were mostly glycerophosphate, nucleoside monophosphates, and polynucleotides. A few sites showed a small amount of dihydroxyacetone phosphate, inosine monophosphate. By allowing a downstream comparison of P compound variations along the Bronx River, this study provides a step toward improving water quality in an urban river system such as New York City and helps to assess the bioavailability of P, in turn, design estuary habitat restoration projects in comparable region of the world.

Keywords

31P-NMR P compound identification Sediments Bronx River Bioavailability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlgern, J., Tranvik, L., Gogoll, A., Waldeback, M., Markides, K., & Rydin, E. (2005). Sediment depth attenuation of biogenic phosphorous compounds measured by 31P NMR. Environmental Science and Technology, 39, 867–872.CrossRefGoogle Scholar
  2. Ahlgren, J., Reitzel, K., Danielsson, R., Gogoll, A., & Rydin, E. (2006). Biogenic phosphorus in oligotrophic mountain lake sediments: Differences in composition measured with NMR spectroscopy. Water Research, 40, 3705–3712.CrossRefGoogle Scholar
  3. Ahlgren, J., Brabandere, H. D., Reitzel, K., Rydin, E., Gogoll, A., & Waldeback, M. (2007). Sediment phosphorus extractants for phosphorus-31 nuclear magnetic resonance analysis: A quantitative evaluation. Journal of Environmental Quality, 36, 892–898.CrossRefGoogle Scholar
  4. Andersen, J. M. (1976). An ignition of method for determination of total phosphorus in lake sediments. Water Research, 10, 329–331.CrossRefGoogle Scholar
  5. Bartoszek, M., Polak, J., & Sulkowski, W. W. (2008). NMR study of the humification process during sewage sludge treatment. Chemosphere, 73, 1465–1470.CrossRefGoogle Scholar
  6. Bedrock, C. N., Cheshire, M. V., Chudek, J. A., Fraser, A. R., Goodman, B. A., & Shand, C. A. (1995). Effects of pH on precipitation of humic acid from peat and mineral soils on the distribution of phosphorus forms in humic and fulvic acid fractions. Communications in Soil Science and Plant Analysis, 26, 1411–1425.CrossRefGoogle Scholar
  7. Bronx River December 5 (2001) Use and standards attainment project preliminary waterbody/watershed characterization report, Bronx River. Vers. 2., BR1-BR6. Retrieved February 14, 2006 from http://www.hydroqual.com/projects/usa/allprojects/pdfs/characterization_pdfs/Bronx_River.PDF.
  8. Bulter, E. (2003). Bruker biospin manual advance beginners guide version 003. Rheinstetten: Stanley, J. Niles, Bruker Biospin GmbH.Google Scholar
  9. Bunemann, E. K., Smernik, R. J., Marschner, P., & McNeill, A. M. (2008a). Microbial synthesis of organic and condensed forms of phosphorus in acid and calcareous soils. Soil Biology and Biochemistry, 40, 932–946.CrossRefGoogle Scholar
  10. Bunemann, E. K., Smernik, R. J., Doolette, A. L., Marschner, P., Stonor, R., Wakelin, S. A., et al. (2008b). Forms of phosphorus in bacteria and fungi isolated from two Australian soils. Soil Biology and Biochemistry, 40, 1908–1915.CrossRefGoogle Scholar
  11. Cade-Menun, B. J. (2005). Characterizing phosphorus in environmental and agricultural samples by 31P nuclear magnetic resonance spectroscopy. Talanta, 66, 359–371.CrossRefGoogle Scholar
  12. Cade-Menun, B. J., Liu, C. W., Nunlist, R., & McColl, J. G. (2002). Soil and litter phosphorus-31 nuclear magnetic resonance spectroscopy: Extractants, metals, and phosphorus relaxation times. Journal of Environmental Quality, 31, 457–465.CrossRefGoogle Scholar
  13. Cade-Menun, B. J., Navaratnam, J. A., & Walbridge, M. R. (2006). Characterizing dissolved and particulate phosphorus in water with 31P nuclear magnetic resonance spectroscopy. Environmental Science and Technology, 40, 7874–7880.CrossRefGoogle Scholar
  14. Cade-Menun, B. J., & Preston, C. M. (1996). A comparison of soil extraction procedures for 31P NMR spectroscopy. Soil Science, 161, 770–785.CrossRefGoogle Scholar
  15. Gadian, D. G., Radha, G. K., Richards, R. E., & Seeley, P. J. (1979). 31P NMR in living tissue: The road from a promising to an important tool in biology. In R. G. Shulman (ed.), Biological application of magnetic resonance (pp 463–535). New York: Academic.Google Scholar
  16. Gannon, M. (2006). Yonkers told to pay $1M in fines. The Westchester County, NY: Journal NewsGoogle Scholar
  17. Hedley, M. J., Stewart, J. W. B., & Chauhan, B. S. (1982). Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of America Journal, 46, 970–976.CrossRefGoogle Scholar
  18. Lambert, J. B., & Mazzola, E. P. (2004). Nuclear magnetic resonance spectroscopy. Upper Saddle River: Pearson.Google Scholar
  19. Liu, J., Wang, H., Yang, H., Ma, Y., & Cai, O. (2009). Detection of phosphorus species in sediments of artificial landscape lakes in China by fractionation and phosphorus-31 nuclear magnetic resonance spectroscopy. Environmental Pollution, 157, 49–56.CrossRefGoogle Scholar
  20. Makarov, M. L., Haumaier, L., & Zech, W. (2002). Nature of soil organic phosphorus: An assessment of peak assignments in the diester region of 31P NMR spectra. Soil Biology and Biochemistry, 34, 1467–1477.CrossRefGoogle Scholar
  21. Nanny, M., & Minear, R. A. (1997). Characterization of soluble unreactive phosphorus using 31P nuclear magnetic resonance spectroscopy. Marine Geology, 139, 77–94.CrossRefGoogle Scholar
  22. Newman, S., & Robinson, J. S. (1999). Forms of organic phosphorus in water, soils and sedimentsl. In K. R. Reddy, G. A. O’Connor, & C. L. Schelske (eds.), Phosphorus biogeochemistry in subtropical ecosystems (pp. 207–223). London: Lewis.Google Scholar
  23. Nicolai, J. (2006). Supreme court of the State of New York County of Westchester. Settle order and judgment (22 NYCRR 202.48). White Plains, New York.Google Scholar
  24. Pant, H. K., Warman, P. R., & Nowak, J. (1999). Identification of soil organic phosporus by 31P nuclear magnetic resonance spectroscopy. Communications in Soil Science and Plant Analysis, 30(5&6), 757–772.CrossRefGoogle Scholar
  25. Pant, H. K., & Reddy, K. R. (2001). Hydrologic influence on stability of organic phosphorus in wetland detritus. Journal of Environmental Quality, 30, 668–674.CrossRefGoogle Scholar
  26. Pant, H. K., Reddy, K. R., & Dierberg, F. E. (2002). Bioavailability of organic phosphorus in a submerged aquatic vegetation-dominated treatment wetland. Journal of Environmental Quality, 31, 1748–1756CrossRefGoogle Scholar
  27. Pavia, D. L., Lampman, G., Kriz, G. S., & Engel, R. G. (2003). Introduction to organic laboratory techniques. Philadelphia: Saunders College.Google Scholar
  28. Protopapas, A. L. (1999). Combined sewer overflow abatement: The East River project. Water Resources Management, 13, 133–151.CrossRefGoogle Scholar
  29. Schindler, D. W. (1978). Factors regulating phytoplankton production and standing crop in the world’s freshwaters. Limnology and Oceanography, 23, 478–486.CrossRefGoogle Scholar
  30. Schumacher, B. A. (2002). Methods for the determination of total organic carbon (TOC) in soils and sediments. US EPA, Environmental sciences division national exposure research laboratory. PO Box 93478 Las Vegas, NV 89193-3478.Google Scholar
  31. Sharpley, A. N., & Rekolainen, S. (1997). Phosphorus in agriculture and its environmental implications. In H. Tunney, O. T. Carton, P. C. Brookes, & A. E. Johnston (eds.), Phosphorus loss from soil to water (pp. 1–53). Wallingford: CAB International.Google Scholar
  32. Sutter, M. I., Langan, S. J., & Cooper, R. J. (2008). Spatial and temporal dynamics of stream water particulate and dissolved N, P, and C forms along a catchment transect, NE Scotland. Journal of Hydrology, 350, 187–202.CrossRefGoogle Scholar
  33. Taranto, M. T., Adams, M. A., Polglase, P. J., et al. (2000). Sequential fraction and characterization (31-P-NMR) of phosphorus-amended soils in Banksia integrifolia (L.f.) woodland and adjacent pasture. Soil Biology and Biochemistry, 32, 169–177.CrossRefGoogle Scholar
  34. Teleman, A., Richard, P., Toivari, M., & Penttila, M. (1999). Identification and quantitation of phosphorus metabolites in yeast neutral pH extracts by nuclear magnetic resonance spectroscopy. Analytical Biochemistry, 272, 71–79.CrossRefGoogle Scholar
  35. Turner, B. L. (2004). Optimizing phosphorus characterization in animal manures by solution phosphorus-31 nuclear magnetic resonance spectroscopy. Journal of Environmental Quality, 33, 757–766.CrossRefGoogle Scholar
  36. Turner, B. L., Cade-Menun, B. J., Condron, L. M., & Newman, S. (2005). Extraction of soil organic posphorus. Talanta, 66, 294–306.CrossRefGoogle Scholar
  37. US EPA (US Environmental Protection Agency) (1983). Method 365.1. Methods for chemical analysis of water and wastes. Environ. Monit. Support Lab., Cincinnati, OH.Google Scholar
  38. US EPA (US Environmental Protection Agency) (1992). ESS method 310.1: Ortho-phosphorus, dissolved automated, ascorbic acid. Madison: Environmental Sciences Section Inorganic chemistry unit, Wisconsin State Lab of Hygiene.Google Scholar
  39. USEPA (2003) Method 365.4. Determination of total phosphorus in Kjeldahl digestion by semi automated colorimetry. Brazos River Authority SOP no. BRA-007.Google Scholar
  40. Wetzel, R. G. (1999). Organic phosphorus mineralization in soils and sediments. In: K. R. Reddy, G. A. O’Connor, & C. L. Schelske (eds.), Phosphorus biogeochemistry in subtropical ecosystems (pp 225–245). London: Lewis.Google Scholar
  41. Worsfold, P. J., Monbet, P., Tappin, A. D., Fitzsimons, M. F., Stiles, D. A., & Mckelvie, I. D. (2008). Characterisation and quantification of organic phosphorus and organic nitrogen components in aquatic systems: A review. Analytica Chimica Acta, 624, 37–58.CrossRefGoogle Scholar
  42. Zhang, R. Y., Wu, F. Ch., Liu, C. Q., Fu, P. Q., Li, W., Wang, Li. Y., et al. (2008). Characteristics of organic phosphorus fractions in different trophic sediments of lakes from the middle and lower reaches of Yangze River region and southwestern plateau, China. Environmental Pollution, 152, 366–372.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Environmental Geographic and Geological SciencesLehman College, City University of New YorkBronxUSA
  2. 2.The Graduate Center, Ph.D. Program in Earth and Environmental SciencesThe City University of New YorkNew YorkUSA

Personalised recommendations