Environmental Monitoring and Assessment

, Volume 170, Issue 1–4, pp 519–534 | Cite as

Application of diatom biotic indices in the Guadalquivir River Basin, a Mediterranean basin. Which one is the most appropriated?

  • Gonzalo Martín
  • Julia Toja
  • Silvia Estela Sala
  • María de los Reyes Fernández
  • Isabel Reyes
  • María Adela Casco


The diatom community was studied in 110 sites within the Guadalquivir River catchment area, South Spain, in order to test the applicability of diatom biotic indices developed in other European regions to this site and to provide a useful tool for monitoring water quality in the river basin. We identified 399 taxa and calculated five diatomic indices (Specific Polluosensitivity Index (IPS), Biological Diatom Index, Trophic Diatom Index, Index of the European Economic Community, and Diatom-based Eutrophication Pollution Index (EPI-D)). Since the indices analyzed were highly correlated, their results could be compared. The indices that gave the best results were the EPI-D followed by the IPS, the latter being the most widely used index in Iberian catchments. Nevertheless, the EPI-D presented certain advantages: (1) this index correlated the best with the water chemistry in the catchment area; (2) EPI-D is not sensitive to the presence of taxa belonging to the Achnanthidium minutissimum complex frequently present in the Guadalquivir basin. Nevertheless, EPI-D retains its effectiveness and thus constitutes an easier index for application from a taxonomical standpoint. We estimated the general water quality of the entire basin on the basis of EPI-D. According to these results, 55% of the sites had either high or good water quality. The species that better characterized each water quality category in the study area were: A. minutissimum (high and good), Amphora pediculus (moderate), Nitzschia frustulum (poor), and Nitzschia capitellata (bad).


Biotic indices Diatoms Water quality Rivers Spain 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ács, É., Szabó, K., Kiss, A. K., Tóth, B., Zaray, G., & Kiss, K. T. (2005). Investigation of epilithic algae on the River Danube from Germany to Hungary and the effect of a very dry year on the algae of the River Danube. Archiv für Hydrobiologie, 16, 389–417.Google Scholar
  2. Ács, É., Szabó, K., Tóth, B., & Kiss, T. (2004). Investigation of benthic algal communities, especially diatoms of some Hungarian streams in connection with reference conditions of the Water Framework Directives. Acta Botanica Hungarica, 46, 255–277.CrossRefGoogle Scholar
  3. Agencia Catalana de l’Aigua (2003). Anàlisi de la viabilitat i proposta d’indicadors fitobentònics de la qualitat del’aigua per als cursos fluvials de Catalunya. Aplicació de la Directiva Marc en Política d’Aigües de la Unió Europea (2000/60/CE). Generalitat de Catalunya. Departament de Medi Ambient.Google Scholar
  4. Almeida, S. F. P. (2001). Use of diatoms for freshwater quality evaluation in Portugal. Limnética, 20(2), 205–213.Google Scholar
  5. APHA (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington: EEUU, American Public Health Association, American Water Works Association, Water Environment Federation.Google Scholar
  6. Atazadeh, I., Sharifi, M., & Kelly, M. G. (2007). Evaluation of the Trophic Diatom Index for assessing water quality in River Gharasou, western Iran. Hydrobiologia, 589, 165–173.CrossRefGoogle Scholar
  7. Blanco, S., Bécares, E., Hernández, N., & Ector, L. (2008). Evaluación de la calidad del agua en los ríos de la cuenca del Duero mediante índices diatomológicos. Publicaciones técnicas del CEDEX. Ingeniería Civil, 148, 139–143.Google Scholar
  8. Camargo, J. A., & Jiménez, A. (2007). Ecological responses of epilithic diatoms and aquatic macrophytes to fish faro pollution in a Spanish river. Anales del Jardín Botánico de Madrid, 64, 213–219.CrossRefGoogle Scholar
  9. Cappelletti, C., Ciutti, F., Crippa, A., Mancini, L., Beltrami, M. E., Pierdominici, E., et al. (2005). Diatomee come indicatori della qualità biologica dei corsi d’acqua. EPI-D ed altri metodi europei a confronto: il caso studio del fiume Tevere. Biologia Ambientale, 19, 103–108.Google Scholar
  10. Casco, M. A., & Toja, J. (2003). Efecto de la fluctuación de nivel del agua en la biomasa, la diversidad y las estrategias del perifiton de los embalses. Limnética, 22, 115–134.Google Scholar
  11. CEMAGREF (1982). Étude des méthodes biologiques d’appreciation quantitative de la qualité des eaux. Rapport Cemagref, Bordeaux—Agence de l’Eau Artois-Picardie, Douai.Google Scholar
  12. Confederación Hidrográfica del Duero (2007). Evolución de la calidad de las aguas en la cuenca del Duero en los últimos 20 años (1986–2006). Ministerio de Medio Ambiente.Google Scholar
  13. Confederación Hidrográfica del Ebro (2003). 2 a fase del diseño de la red de diatomeas en la cuenca del Ebro. Ministerio de Medio Ambiente.Google Scholar
  14. Confederación Hidrográfica del Ebro (2005). Metodología para el establecimiento del Estado Ecológico según la Directiva Marco del Agua. Protocolos de muestreo y análisis para fitobentos. Ministerio de Medio Ambiente.Google Scholar
  15. Dell’Uomo, A., Pensieri, A., & Corradetti, D. (1999). Diatomées épilithiques du fleuve Esino (Italia centrale) et leur utilisation pour l’evaluation de la qualité biologique de l’eau. Cryptogamie Algologie, 20, 253–269.CrossRefGoogle Scholar
  16. Descy, J. P., & Coste, M. (1991). A test of methods for assessing water quality based on diatoms. Verhandlungen des Internationalen Vereins für Limnologie, 24, 2112–2116.Google Scholar
  17. Duong, T. T., Coste, M., Feurtet-Mazet, A., Dang, D. K., Gold, C., Park, Y. S., et al. (2006). Impact pollution from the Hanoi area on benthic diatom communities collected from the Red, Nhue and Tolich rivers (Vietnam). Hydrobiologia, 563, 201–216.CrossRefGoogle Scholar
  18. Eloranta, P., & Soininen, J. (2002). Ecological status of some Finnish rivers evaluated using benthic diatom communities. Journal of Applied Phycology, 14, 1–7.CrossRefGoogle Scholar
  19. European Standard EN 13946 (2003). Water quality—guidance standard for the routine sampling and pretreatment of benthic diatoms from rivers (p. 14). Brussels: European Committee for Standardization.Google Scholar
  20. European Union (2000). 2000/60/EC Directive of the European Parliament and the Council of 23 October establishing a framework for Community action in the field of water policy. OJ, L 327 (22.12.2000), 1–72.Google Scholar
  21. Germain, H. (1981). Flore des Diatomées des eaux douces et saûmatres. Paris: Ed. Boubée.Google Scholar
  22. Ghosh, M., & Gaur, J. P. (1998). Current velocity and the establishment of stream algal periphyton communities. Aquatic Botany, 60, 1–10.CrossRefGoogle Scholar
  23. Gobierno Vasco (2005). Red de seguimiento del estado ecológico de los ríos de la Comunidad Autónoma del País Vasco. Gobierno Vasco, Departamento de Medio Ambiente y Ordenación del territorio.Google Scholar
  24. Gomà, J., Ortiz, R., Cambra, J., & Ector, L. (2004). Water quality evaluation in Catalonian Mediterranean rivers using epilithic diatoms as bioindicators. Vieu Milieu, 54, 81–90.Google Scholar
  25. Gomà, J., Rimet, F., Cambra, J., Lucien, H., & Ector, L. (2005). Diatom communities and water quality assessment in mountain rivers of the upper Segre basin (La Cerdanya, oriental Pyrenees). Hydrobiologia, 551, 209–225.CrossRefGoogle Scholar
  26. Gómez, N. (1999). Epipelic diatoms from the Matanza–Riachuelo river (Argentina), a highly polluted basin from the Pampean plain: Biotic indices and multivariate analysis. Aquatic Ecosystem Health and Management, 2, 301–309.CrossRefGoogle Scholar
  27. Gómez, N., & Licursi, M. (2001). The Pampean Diatom Index (IDP) for assessment of rivers and streams in Argentina. Aquatic Ecology, 35, 173–181.CrossRefGoogle Scholar
  28. Jüttner, I., Sharma, S., Dahal, B. M., Ormerod, S. J., Chimonides, P. J., & Cox, E. J. (2003). Diatoms as indicators of stream quality in the Kathmandu Valley and Middle Hills of Nepal and India. Freshwater Biology, 48, 2065–2084.CrossRefGoogle Scholar
  29. Kelly, M. G. (1998). Use of the Trophic Diatom Index to monitor eutrophication in rivers. Water Research, 32, 236–242.CrossRefGoogle Scholar
  30. Kelly, M. G., Cazaubon, A., Coring, E., Dell’Uomo, A., Ector, L., Goldsmith, B., et al. (1998). Recommendations for the routine sampling of diatoms for water quality assessments in Europe. Journal of Applied Phycology, 10, 215–224.CrossRefGoogle Scholar
  31. Kobayasi, H., & Mayama, S. (1982). Most pollution-tolerant diatoms of severely polluted rivers in the vicinity of Tokyo. Japanese Journal of Phycology, 30, 188–196.Google Scholar
  32. Krammer, K., & Lange-Bertalot, H. (1986). Süsswasserflora von Mitteleuropa. Band 2/1. Bacillariophyceae. Naviculaceae. Stuttgart: Gustav Fischer.Google Scholar
  33. Krammer, K., & Lange-Bertalot, H. (1988). Süsswasserflora von Mitteleuropa. Band 2/2. Bacillariophyceae. Epithemiaceae, Bacillariaceae, Surirellaceae. Stuttgart: Gustav Fischer.Google Scholar
  34. Krammer, K., & Lange-Bertalot, H. (1991a). Süsswasserflora von Mitteleuropa. Band 2/3. Bacillariophyceae. Centrales, Fragilariaceae, Eunotiaceae. Stuttgart: Gustav Fischer.Google Scholar
  35. Krammer, K., & Lange-Bertalot, H. (1991b). Süsswasserflora von Mitteleuropa. Band 2/4. Bacillariophyceae. Achnanthaceae. Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema. Gesamtliteratur-verzeichnis für Teil 1–4. Stuttgart: Gustav Fischer.Google Scholar
  36. Kupe, L., Schanz, F., & Bachofen, R. (2007). Biodiversity in the benthic diatom community in the upper River Töss reflected in water quality indices. Clean-Soil, Air, Water, 36, 84–91.CrossRefGoogle Scholar
  37. Lobo, E. A., Kitazawa, S., & Kobayasi, H. (1990). The use of scanning electron microscopy as a necessary complement of light microscopy diatom examination for ecological studies. Diatom, 5, 33–43.Google Scholar
  38. Martín, G., Alcalá, E., Solá, C., Plazuelo, A., Burgos, M. D., Reyes, E., et al. (2004). Efecto de la contaminación minera sobre el perifiton del río Guadiamar. Limnética, 23, 315–330.Google Scholar
  39. Montesanto, B., Ziller, S., & Coste, M. (1999). Diatomées épilithiques et qualité biologique des ruisseaux du mont Stratonikon, Chalkidiki (Grèce). Crytogamie Algologie, 20, 235–251.CrossRefGoogle Scholar
  40. Morales, E. A., Siver, P. A., & Trainor, F. R. (2001). Identification of diatoms (Bacillariophyceae) during ecological assessments: Comparison between light microscopy and scanning electron microscopy techniques. Proceedings of the Academy of Natural Sciences of Philadelphia, 151, 95–103.CrossRefGoogle Scholar
  41. Navarro, E., Guasch, H., Muñoz, I., Real, M., & Sabater, S. (2000). Aplicación de un sistema de canales artificiales en el estudio ecotoxicológico de comunidades microbentónicas. Limnética, 18, 1–14.Google Scholar
  42. Oscoz, J., Gomà, J., Ector, L., Cambra, J., Pardos, M., & Durán, C. (2007). Estudio comparativo del estado ecológico de los ríos de la cuenca del Ebro mediante macroinvertebrados y diatomeas. Limnética, 26, 143–158.Google Scholar
  43. Penalta-Rodríguez, M., & López-Rodríguez, M. C. (2007). Diatomeas y calidad del agua de los ríos del Macizo Central gallego (Ourense, N.O. España) mediante la aplicación de índices diatomológicos. Limnética, 26, 351–358.Google Scholar
  44. Potapova, M., & Hamilton, P. B. (2007). Morphological and ecological variation within the Achnanthidium minutissimum (Bacillariophyceae) species complex. Journal of Phycology, 43, 561–575.CrossRefGoogle Scholar
  45. Poulickova, A., Duchoslav, M., & Dokulil, M. (2004). Littoral diatom assemblages as bioindicators of lake trophic status: A case study from perialpine lakes in Austria. European Journal of Phycology, 39, 143–152.CrossRefGoogle Scholar
  46. Prygiel, J. (2002). Management of the diatom monitoring networks in France. Journal of Applied Phycology, 14, 19–26.CrossRefGoogle Scholar
  47. Prygiel, J., Carpentier, P., Almeida, S., Coste, M., Druart, J. C., Ector, L., et al. (2002). Determination of the biological diatom index (IBD NF T 90-354): Results of an intercomparison exercise. Journal of Applied Phycology, 14, 27–39.CrossRefGoogle Scholar
  48. Prygiel, J., & Coste, M. (2000). Guide méthodologique pour la mise en oeuvre de l’Indice Biologique Diatomées NF T 90-354. Bordeaux: Agence de l’Eau Artois-Picardie, Cemagref.Google Scholar
  49. Prygiel, J., Coste, M., & Bukowska, J. (1999). Review of the major diatom-based techniques for the quality assessment of rivers-state of the art in Europe. In J. Prygiel, B. A. Whitton, & J. Bukowska (Eds.), Use of algae for monitoring Rivers III (pp. 224–238). Douai: Agence de l’Eau Artois-Picardie.Google Scholar
  50. Sabater, S. (2000). Diatom communities as indicators of environmental stress in the Guadiamar river, S–W. Spain, following a major mine tailings spill. Journal of Applied Phycology, 12, 113–124.CrossRefGoogle Scholar
  51. Seguin, F., Druart, J. C., & Le Cohu, R. (2001). Effects of atrazine and nicosulfuron on periphytic diatom communities in freshwater outdoor lentic mesocosms. Annales de Limnologie, 37, 3–8.CrossRefGoogle Scholar
  52. Soininen, J. (2005). Assessing the current related heterogeneity and diversity patterns of benthic diatom communities in a turbid and a clear water river. Aquatic Ecology, 38, 495–501.CrossRefGoogle Scholar
  53. Taylor, J. C., Prygiel, J., Vosloo, A., de la Rey, P. A., & van Rensburg, L. (2007). Can diatom-based pollution indices be used for biomonitoring in South Africa? A case study of the Crocodile West and Marico water management area. Hydrobiologia, 592, 455–464.CrossRefGoogle Scholar
  54. Torrisi, M., & Dell’Uomo, A. (2006). Biological monitoring of some Apennine rivers (Central Italy) using the diatom-based Eutrophication/Pollution Index (EPI-D) compared to other European diatom indices. Diatom Research, 21, 159–174.Google Scholar
  55. Wu, J. T. (1999). A generic index of diatom assemblages as bioindicator of pollution in the Keelung River of Taiwan. Hydrobiologia, 397, 79–87.CrossRefGoogle Scholar
  56. Wu, J. T., & Kow, L. T. (2002). Applicability of a generic index for diatom assemblages to monitor pollution in the tropical river Tsanwun, Taiwan. Journal of Applied Phycology, 14, 63–69.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Gonzalo Martín
    • 1
  • Julia Toja
    • 1
  • Silvia Estela Sala
    • 2
  • María de los Reyes Fernández
    • 1
  • Isabel Reyes
    • 1
  • María Adela Casco
    • 2
  1. 1.Departamento de Biología Vegetal y Ecología, Facultad de BiologíaUniversidad de SevillaSevilleEspaña
  2. 2.Departamento Científico Ficología, Facultad de Ciencias Naturales y MuseoUniversidad Nacional de La PlataLa PlataArgentina

Personalised recommendations