Environmental Monitoring and Assessment

, Volume 170, Issue 1–4, pp 445–455 | Cite as

Assessing the zooplankton community and environmental factors in a Mediterranean wetland

  • Ifigenia I. Kagalou
  • Alexia Kosiori
  • Ioannis D. Leonardos
Article

Abstract

Mediterranean wetlands represent unique repositories of biodiversity, but these ecosystems are increasingly threatened by human-induced habitat loss. Seventy percent of Greek wetlands (ponds, mires, marshes, etc.) have been lost in the past 80 years due to human intervention. In Greece habitat types of mires, listed in Directive 92/43/EEC, have been recorded in a few locations, one of the most important is Kalodiki wetland. Eutrophication key elements were determined at four sampling stations throughout 1 year in order to monitor the trophic conditions. Moreover, the zooplankton community was described as biological element relevant in the assessment of the ecological status of Kalodiki wetland. Kalodiki wetland exhibits nutrient concentrations corresponding to eutrophic conditions while according to chlorophyll-a values it is classified between mesotrophic and eutrophic status depending mostly on the sampling period. As concerning zooplankton community, it appears poor in species and dominated by small-sized organisms, which is generally typical of eutrophic, disturbed systems. Differences among zooplankton assemblages over seasons as well as among sampling sites highlight the role of both abiotic and biotic factors.

Keywords

Zooplankton Eutrophication Wetland Mediterranean ecosystems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angeler, D., Alvarez-Cobelas, M., Sanchez-Carrillo, S., & Rodrigo, M. (2002). Assessment of exotic fish impacts on water quality and zooplankton in a degraded semi-arid floodplain wetland. Aquatic Science, 64, 76–86CrossRefGoogle Scholar
  2. Angeler, D., & Moreno, J. (2007). Zooplankton community resilience after press-type anthropogenic stress in temporary ponds. Ecological Applications, 17(4), 1105–1115.CrossRefGoogle Scholar
  3. Antonopoulos, A., Kagalou, I., Michaloudi, E., & Leonardos, I. (2008). Limnological features of a shallow eutrophic lake (Lake Pamvotis, Greece) with emphasis on zooplankton community structure. Oceanological and Hydrobiological studies, XXXVII (7–20), 7–19.Google Scholar
  4. APHA (1989). Standard methods for the examination of water and wastewater, 17th Edn. In A. Eaton , E. Rice, & R. Baird (Eds.). Washington.Google Scholar
  5. Arapis, Th. (1998). Environmental study of Kalamas river and Kalodiki wetland. Ministry of Environment (in Greek). Athens, Greece.Google Scholar
  6. Beklioglu, M., Romo, S., Kagalou, I., Ouintana, X., & Becares, E. (2007). State of the art in the functioning of shallow Mediterranean lakes: Workshop conclusions. Hydrobiologia, 584, 317–326.CrossRefGoogle Scholar
  7. Botis, A., Bouzinos, A., & Christians, K. (1993). The geology and paleoecology of the Kalodiki peatland. W. Greece, Helsinki: Int. Peat Journal 5.Google Scholar
  8. Crisman, T., Mitraki, Ch., & Zalidis, G. (2005). Integrating vertical and horizontal approaches for management of shallow lakes and wetlands. Ecological Engineering, 24, 379–389CrossRefGoogle Scholar
  9. Dimopoulos, P., Sykora, K., Gilissen, C., Wiecherink, D., & Georgiadis, Th. (2005). Vegetation ecology of Kalodiki fen (NW Greece). Biologia Bratislava, 60/1, 69–82Google Scholar
  10. Duncan, A., & Schemer, F. (1988). Fish pressure on ecosystems: Dynamic, holistic indices. In S. S. De Silva (Ed.), Proceedings of the symposium on reservoir fishery management and development in Asia (pp. 176–182). Ottawa.Google Scholar
  11. Fahd, K., Serrano, L., & Toja, J. (2000). Crustacean and rotifer composition of temporary ponds in the Donana National Park (SW Spain) during floods. Hydrobiologia, 436, 41–49.CrossRefGoogle Scholar
  12. Fontaneto, D., Segers, H., & Melane, G. (2008). Marine rotifers from the Adriatic Sea, with description of Lecane sp. Journal of the Marine Biological Association of the United Kingdom, 88(2), 253–258.CrossRefGoogle Scholar
  13. Gerakis, P. (1993). Conservation and management of Greek wetlands workshop, April 1989 (p. 493). Switzerland, Thessaloniki, Greece: IUCN, Gland.Google Scholar
  14. Guevara, G., Lozano, P., & Reinoso, G. (2009). Horizontal and seasonal patterns of tropical zooplankton from eutrophic Prado reservoir (Colombia). Limnologica, 39, 128–139.Google Scholar
  15. Gyllstrom, M., & Hanson, I. A. (2005). The role of climate in shaping zooplankton communities of shallow lakes. Limnology and Oceanography, 50(6), 2008–2021.CrossRefGoogle Scholar
  16. Havens, K. E., James, R. T., East, T. L., & Smith, V. H. (2003). N:P ratios, light limitation, and cyanobacterial dominance in a subtropical lake impacted by non-point source nutrient pollution. Environmental Pollution, 122, 379–390.CrossRefGoogle Scholar
  17. Jeppesen, E., Sondegaard, E., Jensen, P., Mortensen, A., Hansen, A., & Jorgensen, T. (1998). Major perturbation in biological structure and dynamics of a shallow hypertrophic lake following a reduction in sewage loading: An 18 year study in Lake Sobygaard, Denmark. Ecosystem, 1, 250–267.CrossRefGoogle Scholar
  18. Kagalou, I., Papastergiadou, E., Beza, P., & Giannouris, E. (2006). Assessment of the trophic state of Kalodiki wetland, western Greece. Fresenius Environmental Bulletin, 15(2), 136–140.Google Scholar
  19. Kippen-Kuczynska, N., & Nagengast, B. (2006). The influence of the spatial structure of hydromacrophytes and differentiating habitat on the structure of rotifer and cladoceran communities. Hydrobiologia, 559, 203–212CrossRefGoogle Scholar
  20. Leira, M., & Cantonati, M. (2008). Effects of water level fluctuations on lakes: An annotated bibliography. Hydrobiologia, 613, 171–184.CrossRefGoogle Scholar
  21. Leonardos, I., Kagalou, I., Tsoumani, M., & Economidis, P. S. (2008). Fish fauna in a Greek lake: Biodiversity, introduced fish species over a 80-year period and their impacts on the ecosystem. Ecology of Freshwater Fish, 17, 165–173.CrossRefGoogle Scholar
  22. Mantzafleri, N., Psilovikos, A., & Blanta, A. (2009). Water quality monitoring and modelling in Lake Kastoria, using GIS. Assessment and management of pollution sources. Water Resources Management. doi: 10.1007/s11269-009-9431-4.Google Scholar
  23. Meerhoff, M., Mazzeo, N., Moss, B., & Rodriguez-Gallego, L. (2003). The structuring role of free-floating versus submerged plants in a subtropical shallow lake. Aquatic Ecology, 37, 377–391.CrossRefGoogle Scholar
  24. Mitraki, Ch., Crisman, T., & Zalidis, G. (2004). Lake Koronia, Greece: Shift from autotrophy to heterotrophy with cultural eutrophication and progressive water-level reduction. In Proceeding of lake shores conference (pp. 68) Kostanz, June 2003.Google Scholar
  25. Moss, B., Stephen, D., Balayla, D., Bécares, E., Collings, S. E., Fernández-Aláez, C. et al. (2004). Continental-scale patterns of nutrient and fish effects on shallow wetland lakes: Synthesis of a pan-European mesocosm experiment. Freshwater Biology, 49, 1633–1650.CrossRefGoogle Scholar
  26. Moustaka-Gouni, M., Vardaka, E., Michaloudi, E., Kormas, K., Tryfon, E., Mihalatou, H., et al. (2006). Plankton food web structure in a eutrophic polymictic lake with a history of toxic cyanobacterial blooms’. Limnologya and Oceanographic, 51(1), 715–727.CrossRefGoogle Scholar
  27. Naselli-Flores, L., & Barone, R. (2005). Water–level fluctuations in Mediterranean reservoirs: Setting a dewatering threshold as a management tool to improve water quality. Hydrobiologia, 548, 85–99.CrossRefGoogle Scholar
  28. OECD (1982). Eutrophication of waters. Monitoring, assessment and control. Final Report, Paris.Google Scholar
  29. Ortega-Mayagoitia, E., Armengol, X., & Rojo, C. (2000). Structure and dynamics of zooplankton in a semi-arid wetland, the National Park Las Tablas de Daimel (Spain). Wetlands, 20, 629–638.CrossRefGoogle Scholar
  30. Papastergiadou, E., Retalis, A., Apostalakis, A., & Georgiadis, Th. (2008). Environmental monitoring of spatio-temporal changes using remote sensing and GIS in a Mediterranean wetland of Northern Greece. Water Resources Management, 22, 579–594.CrossRefGoogle Scholar
  31. Pinto-Coelho, R., Pinel-Allol, B., Methot, G., & Havens, K. (2005). Crustacean zooplankton in lakes and reservoirs of temperate and tropical regions: Variations with trophic status. Canadian Journal of Fisheries and Aquatic Science, 62, 348–361.CrossRefGoogle Scholar
  32. Romo, S., Miracle, M., Villena, M. J., Rueda, J., Ferriol, C., & Vicente, E. (2004). Mesocosm experiments on nutrient and fish effects on shallow lake food webs in a Mediterranean climate. Freshwater Biology, 49, 593–1607.CrossRefGoogle Scholar
  33. Sarika-Hatzinikolaou, M. (1994). Floristic and phytosociological study of aquatic ecosystems of Epirus. Ph.D. Thesis, University of Athens, Greece.Google Scholar
  34. Sas, H. (1989). Lake restoration by reduction of nutrient loading: Expectations, experiences, extrapolations. S. Augustin: Academia Verlag RicharzGoogle Scholar
  35. Seminara, M., Vagaggini, D., & Margaritora, F. (2008). Differential responses of zooplankton assemblages to environmental variation in temporary and permanent ponds. Aquatic Ecology, 42, 129–140.CrossRefGoogle Scholar
  36. ter Braak, C. J. F. (1987). Ordination. In R. H. G. Jongman, C. J. F. ter Braak, & O. F. R. van Tongeren (Eds.), Data analysis in community and landscape ecology (pp. 91–173). Wageningen: Pudoc.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Ifigenia I. Kagalou
    • 1
  • Alexia Kosiori
    • 1
  • Ioannis D. Leonardos
    • 2
  1. 1.Department of Ichthyology and FisheriesTechnological Educational Institute of EpirusIgoumenitsaGreece
  2. 2.Laboratory of Zoology, Department of Biological Applications and TechnologiesUniversity of IoanninaIoanninaGreece

Personalised recommendations