Environmental Monitoring and Assessment

, Volume 170, Issue 1–4, pp 301–309

Semiquantitative color profiling of soils over a land degradation gradient in Sakaerat, Thailand

  • Ryoichi Doi
  • Chongrak Wachrinrat
  • Sakhan Teejuntuk
  • Katsutoshi Sakurai
  • Pongsak Sahunalu
Article

Abstract

In this study, we attempted multivariate color profiling of soils over a land degradation gradient represented by dry evergreen forest (original vegetation), dry deciduous forest (moderately disturbed by fire), and bare ground (severely degraded) in Sakaerat, Thailand. The soils were sampled in a dry-to-wet seasonal transition. Values of the red–green–blue (RGB), cyan–magenta–yellow–key black (CMYK), L*a*b*, and hue–intensity–saturation (HIS) color models were determined using the digital software Adobe PhotoshopTM. Land degradation produced significant variations (p < 0.05) in R, C, Y, L*, a*, b*, S, and I values (p < 0.05). The seasonal transition produced significant variations (p < 0.05) in R, G, B, C, M, K, L*, b*, and I values. In discriminating the soils, the color models did not differ in discriminatory power, while discriminatory power was affected by seasonal changes. Most color variation patterns had nonlinear relationships with the intensity of the land degradation gradient, due to effects of fire that darkened the deciduous forest soil, masking the nature of the soil as the intermediate between the evergreen forest and the bare ground soils. Taking these findings into account, the utilization of color profiling of soils in land conservation and rehabilitation is discussed.

Keywords

Land degradation Multivariate analysis Soil color Thai savanna 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Caldwell, B. A. (2005). Enzyme activities as a component of soil biodiversity: A review. Pdobiologia, 49, 637–644.CrossRefGoogle Scholar
  2. Certini, G. (2005). Effects of fire on properties of forest soils: A review. Oecologia, 143, 1–10.CrossRefGoogle Scholar
  3. Daul, C., Rösch, R., & Claus, C. (2000). Building a color classification system for textured and hue homogeneous surfaces: System calibration and algorithm. Machine Vision and Applications, 12, 137–148.CrossRefGoogle Scholar
  4. Doi, R., & Ranamukhaarachchi, S. L. (2007a). Soil colour designation using Adobe PhotoshopTM in estimating soil fertility restoration by Acacia auriculiformis plantation on degraded land. Current Science, 92, 1605–1610.Google Scholar
  5. Doi, R., & Ranamukhaarachchi, S. L. (2007b). Integrative evaluation of rehabilitative effects of Acacia auriculiformis on degraded soil. Journal of Tropical Forest Science, 19, 150–163.Google Scholar
  6. Doi, R., & Sakurai, K. (2004). Principal components derived from soil physico-chemical data explained a land degradation gradient, and suggested the applicability of new indexes for estimation of soil productivity in the Sakaerat Environmental Research Station, Thailand. International Journal of Sustainable Development and World Ecology, 11, 298–311.CrossRefGoogle Scholar
  7. Jain, T. B., Gould, W. A., Graham, R. T., Pilliod, D. S., Lentile, L. B., & González, G. (2008). A soil burn severity index for understanding soil–fire relations in tropical forests. Ambio, 37, 563–568.CrossRefGoogle Scholar
  8. Kakumanu, P., Makrogiannis, S., & Bourbakis, N. (2007). A survey of skin-color modeling and detection methods. Pattern Recognition, 40, 1106–1122.CrossRefGoogle Scholar
  9. Kanzaki, M., Yoda, K., & Dhanmanonda, K. (1995). Mosaic structure and tree growth pattern in a monodominant tropical seasonal evergreen forest in Thailand. In E. O. Box, R. K. Peet, T. Masuzawa, I. Yamada, K. Fujiwara, & P. F. Maycosk (Eds.), Vegetation science in forestry (pp. 495–513). The Netherlands: Kluwer.Google Scholar
  10. Kirk, J. L., Beaudette, L. A., Hart, M., Moutoglis, P., Klironomos, J. N., Lee, H., et al. (2004). Methods of studying soil microbial diversity. Journal of Microbiological Methods, 58, 169–188.CrossRefGoogle Scholar
  11. Kourtev, P., Ehrenfeld, J. G., & Huang, W. (1998). Effects of exotic plant species on soil properties in hardwood forests of New Jersey. Water Air and Soil Pollution, 105, 493–501.CrossRefGoogle Scholar
  12. Liao, K., Paulsen, M. R., & Reid, J. F. (1994). Real-time detection of colour and surface defects of maize kernels using machine vision. Journal of Agricultural Engineering Research, 59, 263–271.CrossRefGoogle Scholar
  13. Lu, D., Moran, E., & Mausel, P. (2002). Linking Amazonian secondary succession forest growth to soil properties. Land Degradation and Development, 13, 331–343.CrossRefGoogle Scholar
  14. Mattana, E., Grillo, O., Gianfranco, V., & Gianluigi, B. (2008). Germplasm image analysis of Astragalus maritimus and A. verrucosus of Sardinia (subgen. Trimeniaeus, Fabaceae). Anales del Jardín Botánico de Madrid, 65, 149–155.Google Scholar
  15. Mausbach, M. J., & Seybold, C. A. (1998). Assessment of soil quality. In R. Lal (Ed.), Soil quality and agricultural sustainability (pp. 33–43). Chelsea: Ann Arbor.Google Scholar
  16. McCune, B., Grace, J. B., & Urban, D. L. (2002). Analysis of ecological communities. Glenden Beach: M and M Software Design.Google Scholar
  17. Mouazen, A. M., De Baerdemaeker, J., & Ramon, H. (2005). Towards development of on-line soil moisture content sensor using a fibre-type NIR spectrophotometer. Soil and Tillage Research, 80, 171–183.CrossRefGoogle Scholar
  18. Sahunalu, P., & Dhanmanonda, P. (1995). Structure and dynamics of dry dipterocarp forest, Sakaerat, northeastern Thailand. In E. O. Box, R. K. Peet, T. Masuzawa, I. Yamada, K. Fujiwara, & P. F. Maycosk (Eds.), Vegetation science in forestry (pp. 465–494). The Netherlands: Kluwer.Google Scholar
  19. Sakurai, K., Tanaka, S., Ishizuka, S., & Kanzaki, M. (1998). Differences in soil properties of dry evergreen and dry deciduous forests in the Sakaerat Environmental Research Station. Tropics, 8, 61–80.CrossRefGoogle Scholar
  20. Sena, M. M., Poppi, R. J., Frighetto, R. T. S., & Valarini, P. J. (2000). Avaliação do uso de métodos quimiométricos em análise de solos. Quimica Nova, 23, 547–556.Google Scholar
  21. Toulios, L. G., Toulios, M. G., & Lipimenou, E. (1998). Soil color relationships with reflectance spectra. Geocarto International, 13, 35–42.CrossRefGoogle Scholar
  22. van Straalen, N. M. (2002). Assessment of soil contamination—A functional perspective. Biodegradation, 13, 41–52.CrossRefGoogle Scholar
  23. Yerima, B. P. K., & van Ranst, E. (2005). Introduction to soil science: Soils of the tropics. Victoria: Trafford.Google Scholar
  24. Zar, J. H. (1999). Biostatistical analysis (4th Ed.). New Jersey: Prentice-Hall.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Ryoichi Doi
    • 1
    • 2
  • Chongrak Wachrinrat
    • 3
  • Sakhan Teejuntuk
    • 3
  • Katsutoshi Sakurai
    • 4
  • Pongsak Sahunalu
    • 3
  1. 1.EcoTopia Science InstituteNagoya UniversityNagoyaJapan
  2. 2.Graduate School of Agricultural ScienceEhime UniversityMatsuyamaJapan
  3. 3.Department of Silviculture, Faculty of ForestryKasetsart UniversityBangkokThailand
  4. 4.Faculty of AgricultureKochi UniversityKochiJapan

Personalised recommendations