Advertisement

Environmental Monitoring and Assessment

, Volume 169, Issue 1–4, pp 385–395 | Cite as

Total metal levels in crayfish Astacus leptodactylus (Eschscholtz, 1823), and surface sediments in Lake Terkos, Turkey

  • Aysegül Kurun
  • Nuray Balkıs
  • Melike Erkan
  • Hüsamettin Balkıs
  • Abdullah Aksu
  • Mahmut Selim Erşan
Article

Abstract

The aim of this study was to determine the total metal accumulation (aluminium, copper, manganese, lead, cadmium and iron) in different organs and eggs of Astacus leptodactylus (Eschscholtz, 1823) and sediments total metal contents (aluminium, copper, manganese, lead, cadmium, iron, zinc, chromium, nickel) in Lake Terkos. Water and sediment samples were collected from two stations at two different depths (1 and 2 m) of Lake Terkos in May 2008. Crayfish samples were collected by trammel net at the same region. Primary hydrographic conditions, such as temperature (13.6–19.4°C), salinity (0.27–0.34‰), dissolved oxygen (7.04–12.30 mg l − 1) and pH (7.42–8.51), were recorded for each sampling point. Moreover, the total organic carbon (1.65–5.44%) and the total calcium carbonate contents (19.44–41.16%) of sediment samples were determined. According to the Turkish Food Codex (J Zool 26:283–288, 2002), the maximum allowable Pb and Cd levels in crayfish are 0.5 mg/kg wet weight. Accordingly, the Pb and Cd levels determined in A. leptodactylus samples are below this limit. However, when compared with the acceptable metal limits defined by WHO, Australian National Health and Medical Research Council and Ministry of Agriculture in United Kingdom (UK), it is clear that the Cu level is at the limit and the Cd results exceed the limit. When the metal contents in sediment samples from Lake Terkos are examined, it is seen that the Al, Fe, Mn, Ni and Cu contents are lower while Zn, Cr, Cd and Pb contents are higher than the crustal average values. The high values draw attention to the land-based domestic and industrial inputs. Lake Terkos sediments have high enrichment factors (EF) of Zn, Cr, Cd and Pb metals which corroborate this result. The low EFs of Fe, Ni and Cu are due to the natural (terrigeneous) inputs. Additionally, there is no Al, Fe, Ni and Cu metal enrichment in these lake sediments because of the low contamination factor (CF) values. However, it is moderately contaminated by Zn, Cr and Pb, and heavily contaminated by Cd.

Keywords

Total metal accumulation Astacus leptodactylus Lake Terkos Sediment Ecological properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abd-Allah, M. A., & Abdallah, M. A. (2008). Effect of cooking on metal content of freshwater crayfish Procambarus clarkii. Chemistry and Ecology, 22(4), 329–334.CrossRefGoogle Scholar
  2. Alcorlo, P., Otero, M., Crehuet, M., Baltanás, A., & Montes, C. (2006). The use of the red swamp crayfish (Procambarus clarkii, Girard) as indicator of the bioavailability of heavy metals in environmental monitoring in the River Guadiamar (SW Spain). Science of the Total Environment, 366(1), 380–390.CrossRefGoogle Scholar
  3. Alexopoulos, E., Mc Crohan, C. R., Powell, J. J., Jugdaohsingh, R., & White, K. N. (2003). Bioavailability and toxicity of freshly neutralized aluminium to the freshwater crayfish Pacifastacus leniusculus. Archives of Environmental Contamination and Toxicology, 45, 509–514.CrossRefGoogle Scholar
  4. Altindağ, A., & Yiğit, S. (2005). Assessment of heavy metal concentrations in the food web of lake Beyşehir, Turkey. Chemosphere, 60(4), 552–556.CrossRefGoogle Scholar
  5. American Water Works Association (1990). Water quality and treatment a handbook of community water supplies 4th Edn. New York: McGraw Hill.Google Scholar
  6. Anderson, M. B., Reddy, P., Preslan, J. E., Fingerman, M., Bollinger, J., Jolibois, L., et al. (1997). Metal accumulation in crayfish, Procambarus clarkii, exposed to a petroleum-contaminated Bayou in Lousiana. Ecotoxicology and Environmental Safety, 37, 267–272.CrossRefGoogle Scholar
  7. Baden, S., & Eriksson, S. (2006). Role, routes and effects of manganese in crustaceans. Oceanography and Marine Biology An Annual Rewiew, 44, 61–83.Google Scholar
  8. Baykal, B. B., Tanık, A., & Gönenç, E. I. (2000). Water quality in drinking water reservoirs of a megacity, Istanbul. Environmental Management, 26(6), 607–614.CrossRefGoogle Scholar
  9. Baylan, E., & Karadeniz, N. (2006). Terkos Gölü (İstanbul) örneğinde doğal ve kültürel çevrenin korunması ve geliştirilmesi üzerine bir araştırma. Ankara Üniversitesi Ziraat Fakültesi Tarım Bilimleri Dergisi, 12(2), 151–161 (in Turkish).Google Scholar
  10. Bollinger, J. E., Bundy, K., Anderson, M. B., Millet, L., Preslan, J. E., Jolibois, L., et al. (1997). Bioaccumulation of chromium in Red Swamp crayfish (Procambarus clarkii). Journal of Hazardous Materials, 54, 1–13.CrossRefGoogle Scholar
  11. Dallinger, R., & Rainbow, P. S. (1993). Ecotoxicology of metals in invertebrates. A special publication of Setac Boca Raton: Lewis.Google Scholar
  12. Duman, F., Aksoy, A., & Demirezen, D. (2007). Seasonal variability of heavy metals in surface sediment of Lake Sapanca, Turkey. Environmental Monitoring and Assessment, 133, 277–283.CrossRefGoogle Scholar
  13. Elangovan, R., Ballance, S., White, K. N., Mc Crohan, C. R., & Powell, J. J. (1999). Accumulation of aluminium by the freshwater crustacean Asellus aquaticus in neutral water. Environmental Pollution, 106, 257–263.CrossRefGoogle Scholar
  14. Elmaci, A., Teksoy, A., Topaç, O. F., Özengin, N., Kurtoğlu, S., Başkaya, H. S. (2007). Assessment of heavy metals in Lake Uluabat, Turkey. African Journal of Biotechnology, 6(19), 2236–2244.Google Scholar
  15. Filipek, H. L., & Owen, R. M. (1978). Geochemical associations and grain size partitioning of heavy metals in lacustrine sediment. Chemical Geology, 26, 105–117.CrossRefGoogle Scholar
  16. Förstner, U., Ahlf, W., Calmano, W., Kerstern, M., & Salamons, W. (1986). Mobility of heavy metals in dredged harbour sediments. In P. G. Sly (Ed.), Sediments and water interactions, proceedings of the third international symposium on interactions between sediments and water (pp. 371–380). New York: Springer.Google Scholar
  17. Förstner, U., & Wittmann, G. T. W. (1981). Metal pollution in the environment. New York: Springer.Google Scholar
  18. Gaudette, H., Flight, W., Taner, L., & Folger, D. (1974). An expensive titration method for the determination of organic carbon in recent sediments. Journal of Sedimentary Petrolegy, 44, 249–253.Google Scholar
  19. Giesy, J. P., Bowling, J. W., & Kania, H. J. (1980). Cadmium and zinc accumulation and elimination by freshwater crayfish. Archives of Environmental Contamination and Toxicology, 9, 683–697.CrossRefGoogle Scholar
  20. Güher, H. (2002). Cladocera and copepoda (Crustacea) fauna of Lake Terkos (Durusu). Turkish Journal of Zoology, 26, 283–288.Google Scholar
  21. Güner, U. (2007). Freshwater crayfish Astacus leptodactylus (Eschscholtz, 1823) accumulates and depurates copper. Environmental Monitoring and Assessment, 133, 365–369.CrossRefGoogle Scholar
  22. Harlioğlu, M. M., & Holdich, D. M. (2001). Meat yields in the introduced freshwater crayfish, Pacifastacus leniusculus (Dana) and Astacus leptodactylus Eschscholtz, from British waters. Aquaculture Research, 32, 411–417.CrossRefGoogle Scholar
  23. Holthuis, L. B. (1961). Report on a collection of Crustacea Decapoda and Stomatopoda from Turkey and the Balkans. Zoologiesche Verhandelingen, 47, 1–67.Google Scholar
  24. Howells, G., Dalziel, T. R. K., Reader, J. P., & Solbé, J. F. (1994). Aluminium and freshwater fish water quality criteria. In G. Howells (Ed.), Water quality for fresh water fish further advisory criteria (pp. 55–115). London: Gordon and Breach, Taylor & Francis.Google Scholar
  25. Ivanoff, A. (1972). Introduction al’océanographie. Paris: Tome I. librairie Vuibert.Google Scholar
  26. Karadede, H., & Ünlü, E. (2000). Concentrations of some heavy metals in water, sediment and fish species from the Atatürk Dam Lake (Euphrates), Turkey. Chemosphere, 41(9), 1371–1376.CrossRefGoogle Scholar
  27. Kir, I., Ozan Tekin, S., & Tuncay, Y. (2007). Kovada Gölü’nün su ve sedimentindeki bazı ağır metallerin mevsimsel değişimi. E.U. Journal of Fisheries & Aquatic Sciences, 24(1–2), 155–158.Google Scholar
  28. Krauskopf, K. B. (1979). Introduction to geochemistry. Tokyo: International Series in the Earth and Planetary Sciences Mc Graw-Hill.Google Scholar
  29. Loring, D. H., & Rantala, R. T. T. (1992). Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth Science Reviews, 32, 235–283.CrossRefGoogle Scholar
  30. Mackevičienė, G. (2002). Bioaccumulation of heavy metals in noble crayfish (Astacus astacus L.) tissues under aquaculture conditions. Ekologija (Vilnius), 2, 79–82.Google Scholar
  31. Mason, B., & Moore, C. B. (1982). Principles of geochemistry. New York: Wiley.Google Scholar
  32. Méndez, L., Racotta, I. S., Acosta, B., & Rodŕıguez-Jaramillo, C. (2001). Mineral concentration in tissues during ovarian development of the white shrimp Penaeus vannamei (Decapoda: Penaeidae). Marine Biology, 138, 687–692.CrossRefGoogle Scholar
  33. Naghshbandi, N., Zare, S., Heidari, R., & Razzaghzadeh, S. (2007). Concentration of heavy metals in different tissues of Astacus leptodactylus from Aras Dam of Iran. Pakistan Journal of Biological Sciences, 10(21), 3956–3959.CrossRefGoogle Scholar
  34. Patir, B., Dinçoğlu, H. A., & İnanli, A. G. (2002). Keban Baraj Gölü tatlı su istakozlarının (Astacus leptodactylus Eschscholtz, 1823) mikrobiyolojik kalitesi ile mikrobiyal florası üzerine araştırmalar. EU Journal of Fisheries Aquatic Sciences, 19(1–2), 19–28.Google Scholar
  35. Pekey, H., Karakaş, D., Ayberk, S., Tolun, L., & Bakoğlu, M. (2004). Ecological risk assessment using trace elements from surface sediments of Izmit Bay (Northeastern Marmara Sea) Turkey. Marine Pollution Bulletin, 48, 946–953.CrossRefGoogle Scholar
  36. Pourang, N., Dennis, J. H., & Ghourchian, H. (2004). Tissue distribution and redistribution of trace elements in shrimp species with the emphasis on the roles of metallothionein. Ecotoxicology, 13, 519–533.CrossRefGoogle Scholar
  37. Ranau, R., Oehlenschläger, J., & Steinhart, H. (2001). Aluminium content in edible parts of seafood. European Food Research and Technology, 212, 431–438.CrossRefGoogle Scholar
  38. Sreenivasa Rao, M., & Anjaneyulu, N. (2008). Effect of copper sulfate on molt and reproduction in shrimp Litopenaeus vannamei. International Journal of Biological Chemistry, 2(1), 35–41.CrossRefGoogle Scholar
  39. Tahon, J. P., Van Hoof, D., Vinckier, C., Witters, R., De Ley, M., & Lontie, R. (1988). The reaction of nitrite with the haemocyanin of Astacus leptodactylus. Biochemical Journal, 249, 891–896.Google Scholar
  40. Taylor, S. R. (1972). Abundance of chemical elements in the continental crust: A new table. Geochimica et Cosmochimica Acta, 28, 1273–1286.CrossRefGoogle Scholar
  41. Timmermans, K. R. (1993). Accumulation and effects of trace metals in freshwater invertebrates. In R. Dallinger, & P. S. Rainbow (Eds.), Ecotoxicology of metals in invertebrates (pp. 133–148). Boca Raton: Lewis.Google Scholar
  42. Turkish Food Codex Regulation (2002). Communiqué on determining the maximum levels of certain contaminants in food stuffs official gazette dated 23.09.2002 and numbered 24885. Ankara: Republic of Turkey Ministry of Agriculture and Rural Affairs General Directorate of Protection and Control Vision.Google Scholar
  43. UNEP (United Nations Environment Programme) (1976). Manual of methods in aquatic environment research, part 3. Sampling and analyses of biological material (guidelines for FAO (GFCM)/UNEP joint coordinated project on pollution in the mediterranean). Rome: Food And Agriculture Organization of The United Nations.Google Scholar
  44. Winkler, L. W. (1888). The determination of dissolved oxygen in water. Berichte der Deutschen Chemischen Gesellschaft, 21, 2843–2855.CrossRefGoogle Scholar
  45. Zhang, L., Ye, X., Feng, H., Jing, Y., Ouyang, T., Yu, X., et al. (2007). Heavy metal contamination in western Xiamen Bay sediments and its vicinity, China. Marine Pollution Bulletin, 54, 974–982.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Aysegül Kurun
    • 1
  • Nuray Balkıs
    • 2
  • Melike Erkan
    • 1
  • Hüsamettin Balkıs
    • 1
  • Abdullah Aksu
    • 2
  • Mahmut Selim Erşan
    • 2
  1. 1.Faculty of Science, Department of BiologyIstanbul UniversityIstanbulTurkey
  2. 2.Institute of Marine Sciences and ManagementIstanbul UniversityIstanbulTurkey

Personalised recommendations