Advertisement

Environmental Monitoring and Assessment

, Volume 168, Issue 1–4, pp 629–644 | Cite as

Trace metal concentrations in tissues of two tinamou species in mining areas of Bolivia and their potential as environmental sentinels

  • Álvaro Garitano-Zavala
  • Javier Cotín
  • Miquel Borràs
  • Jacint Nadal
Article

Abstract

Mining has a long history in the Bolivian Andes and has left many tailing piles, from which trace metals may reach surface waters, soils, and biota. The potential of tinamous (Birds: Tinamidae) as sentinels has never been tested before, although their biological and ecological characteristics mean they could well be appropriate bioindicators. We captured 13 and nine individuals of the Ornate Tinamou (Nothoprocta ornata) from two polluted sites (P1 and P2) and 10 and five from control unpolluted sites (NP1 and NP2) and used, for comparative purposes, four specimens bred in captivity. We also captured six specimens of Darwin’s Nothura (Nothura darwinii) from the polluted site, P2. We determined the concentration of As, Cd, Pb, and Sb in feathers, liver, and kidney and conducted histological analyses of liver and kidney. For the Ornate Tinamou, a site effect was found for all trace metals in all tissues, with the highest concentrations at polluted sites. At the P2 site, no differences between the two tinamou species were detected except in some cases where Darwin’s Nothura shows near-double concentrations. In some cases, mean and/or individual values of trace metal concentrations reached toxicity levels at the polluted sites. Thesaurismosis in proximal convoluted renal tubules, probably related to Cd exposure, was observed in 30% of the samples from the P1 site. Significant correlations were observed between all tissues for all trace metals and also for all trace metals in each tissue. Because the species studied are ubiquitous and relatively abundant, we recommend monitoring programs based on feather analysis.

Keywords

Mining activity Andes Antimony Ornate Tinamou Darwin’s Nothura 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beveridge, M. C. M., Stafford, E., & Coutts, R. (1985). Metal concentrations in the commercially exploited fishes of an endorrheic saline lake in the tin–silver province of Bolivia. Aquaculture Research, 16, 41–53.CrossRefGoogle Scholar
  2. Beyer, W. N., Connor, E. E., & Gerould, S. (1994). Estimates of soil ingestion by wildlife. Journal of Wildlife Management, 58, 375–382.CrossRefGoogle Scholar
  3. Borràs, M., & Nadal, J. (2004). Biomarkers of genotoxicity and other endpoints in an integrated approach to environmental risk assessment. Journal of Mutagenesis, 19, 165–168.CrossRefGoogle Scholar
  4. Burger, J. (1993). Metals in avian feathers: Bioindicators of environmental pollution. Reviews in Environmental Toxicology, 5, 203–311.Google Scholar
  5. Burger, J., & Gochfeld, M. (1994). Behavioral impairments of lead-injected young herring gulls in nature. Fundamental and Applied Toxicology, 23, 553–561.CrossRefGoogle Scholar
  6. Burger, J., & Gochfeld, M. (2000a). Metal levels in feathers of 12 species of seabirds from Midway Atoll in the northern Pacific Ocean. Science of the Total Environment, 257, 37–52.CrossRefGoogle Scholar
  7. Burger, J., & Gochfeld, M. (2000b). Effects of lead on birds (Laridae): A review of laboratory and field studies. Journal of Toxicology and Environmental Health, 3, 59–78.CrossRefGoogle Scholar
  8. Burger, J., & Gochfeld, M. (2009). Comparison of arsenic, cadmium, chromium, lead, manganese, mercury and selenium in feathers in bald eagle (Haliaeetus leucocephalus), and comparison with common eider (Somateria mollissima), glaucous-winged gull (Larus glaucescens), pigeon guillemot (Cepphus columba), and tufted puffin (Fratercula cirrhata) from the Aleutian Chain of Alaska. Environmental Monitoring and Assessment, 152, 357–367.CrossRefGoogle Scholar
  9. Burger, J., Rodgers, J. A., Jr., & Gochfeld, M. (1993). Heavy metal and selenium levels in endangered wood storks Mycteria americana from nesting colonies in Florida and Costa Rica. Archives of Environmental Contamination and Toxicology, 24, 417–420.CrossRefGoogle Scholar
  10. Burger, J., Shukla, T., Benson, T., & Gochfeld, M. (1997). Lead levels in exposed herring gulls: Differences in the field and laboratory. Toxicology and Industrial Health, 13, 193–202.Google Scholar
  11. Burger, J., Gochfeld, M., Jeitner, C., Snigaroff, D., Snigaroff, R., Stamm, T., et al. (2008). Assessment of metals in down feathers of female common eiders and their eggs from the Aleutians: Arsenic, cadmium, chromium, lead, manganese, mercury, and selenium. Environmental Monitoring and Assessment, 143, 247–256.CrossRefGoogle Scholar
  12. Cabot, J. (1992). Family tinamidae (tinamous). In J. del Hoyo, A. Elliot, & J. Sargatal (Eds.), Handbook of the birds of the world (Vol. 1, pp. 112–138). Barcelona: Linx Edicions.Google Scholar
  13. Carlisle, J. D., & Holberton, R. L. (2006). Relative efficiency of fecal versus regurgitated samples for assessing diet and the deleterious effects of a tartar emetic on migratory birds. Journal of Field Ornithology, 77, 126–135.CrossRefGoogle Scholar
  14. Clark, A. J., & Scheuhammer, A. M. (2003). Lead poisoning in Upland-foraging birds of prey in Canada. Ecotoxicology, 12, 23–30.CrossRefGoogle Scholar
  15. Custer, C. M., Yang, C., Crock, J. G., Shearn-Bochsler, V., Smith, K. S., & Hageman, P. L. (2009). Exposure of insects and insectivorous birds to metals and other elements from abandoned mine tailings in three Summit County drainages, Colorado. Environmental Monitoring and Assessment, 153(1–4), 161–177. doi: 10.1007/s10661-008-0346-y.CrossRefGoogle Scholar
  16. Davies, S. J. J. F. (2002). Ratites and tinamous. New York: Oxford University Press.Google Scholar
  17. de Lapuente, J., González-Linares, J., Serret, J., Palaus, X., Teixidó, E., & Borràs, M. (2008). Monitoring the effects of a complex mixture of pollutants next to the lixiviate pool of a Mediterranean landfill and along its training stream using Word Mouse pathology and arthropod biodiversity. Fresenius Environmental Bulletin, 17(11b), 1909–1916.Google Scholar
  18. Eisler, R. (1988a). Arsenic hazards to fish, wildlife, and invertebrates: A synoptic review. Biological Report 85 (1.12). Washington DC: US Fish and Wildlife Service.Google Scholar
  19. Eisler, R. (1988b). Lead hazards to fish, wildlife, and invertebrates: A synoptic review. Biological Report 85 (1.14). Washington DC: US Fish and Wildlife Service.Google Scholar
  20. Fedynich, A. M., Ballard, B. M., McBride, T. J., Estrella, J. A., Garvon, J. M., & Hooper, M. J. (2007). Arsenic, cadmium, copper, lead, and selenium in migrating Blue-Winged Teal (Anas discors L.). Archives of Environmental Contamination and Toxicology, 53, 662–666.CrossRefGoogle Scholar
  21. Fowler, B. A., & Geering, P. L. (1991). Metals and their compounds in the environment occurrence analysis and biological relevance. New York: VHC.Google Scholar
  22. Franson, J. C. (1996). Interpretation of tissue lead residues in birds other than waterfowl. In W. N. Beyer, G. H. Heinz, & A. W. Redmon-Norwood (Eds.), Environmental contaminants in wildlife: Interpreting tissue concentrations (pp. 265–279). Boca Raton: Lewis.Google Scholar
  23. Furness, R. W. (1996). Cadmium in birds. In W. N. Beyer, G. H. Heinz, & A. W. Redmon-Norwood (Eds.), Environmental contaminants in wildlife: Interpreting tissue concentrations (pp. 389–404). Boca Raton: Lewis.Google Scholar
  24. Furness, R. W., Muirhead, S. J., & Woodburn, M. (1986). Using bird feathers to measure mercury in the environment: Relationship between mercury content and molt. Marine Pollution Bulletin, 17, 27–37.CrossRefGoogle Scholar
  25. Furness, R. W., Greenwood, J. J. D., & Jarvis, P. J. (1993). Can birds be used to monitor the environment? In R. W. Furness & J. J. D. Greenwood (Eds.), Birds as monitors of environmental change (pp. 1–41). London: Chapman & Hall.Google Scholar
  26. Garitano-Zavala, A. (2002). El potencial aprovechamiento cinegético de los tinamúes (Aves: Tinamiformes) del altiplano boliviano, y la necesidad de reglamentarlo. In: C. Aguirre, C. Miranda, & Y. Verhasselt (Eds.), Contribución al conocimiento del Sistema del Lago Titicaca (pp. 329–338) La Paz: ANCB-ICIB—Real Academia Belga de Ciencias de Ultramar.Google Scholar
  27. Garitano-Zavala, A., Nadal, J., & Ávila, P. (2003). The feeding ecology and digestive tract morphometry of two sympatric tinamous of the high plateau of the Bolivian Andes: The Ornata Tinamou (N. ornata) and the Darwin’s Nothura (N. darwinii). Ornitología Neotropical, 14, 173–194.Google Scholar
  28. Goede, A. A. (1985). Mercury, selenium, arsenic, and zinc in waders from the Dutch Wadden Sea. Environmental Pollution, 37, 287–309.CrossRefGoogle Scholar
  29. Grove, R. A., Henny, C. J., & Kaiser, J. L. (2009). Osprey: Worldwide sentinel species for assessing and monitoring environmental contamination in rivers, lakes, reservoirs, and estuaries. Journal of Toxicology and Environmental Health, Part B, 12, 25–44.CrossRefGoogle Scholar
  30. Grue, C. E., O’Shea, T. J., & Hoffman, D. J. (1984). Lead concentrations and reproduction in highway nesting barn swallows. Condor, 86, 383–389.CrossRefGoogle Scholar
  31. Hayes, W. J., Jr., & Laws, E. R., Jr. (Eds.) (1991). Handbook of Pesticide Toxicology. Volume 2. Classes of Pesticides. New York: Academic.Google Scholar
  32. Hindell, M. A., Brothers, N., & Gales, R. (1999). Mercury and cadmium concentrations in the tissues of three species of southern albatrosses. Polar Biology, 22, 102–108.CrossRefGoogle Scholar
  33. Kim, J., Park, S. K., & Koo, T. H. (2007). Lead and cadmium concentrations in shorebirds from the Yeongjong Island, Korea. Environmental Monitoring and Assessment, 134, 355–361.CrossRefGoogle Scholar
  34. Larison, J. R., Likens, G. E., Fitzpatrick, J. W., & Crock, J. G. (2000). Cadmium toxicity among wildlife in the Colorado Rocky Mountains. Nature, 406, 181–183.CrossRefGoogle Scholar
  35. Llacuna, S., Gorriz, A., Sanpera, C., & Nadal, J. (1995). Metal accumulation in three species of Passerine birds (Emberiza cia, Parus major and Turdus merula) subjected to air pollution from a coal-fired power plant. Archives of Environmental Contamination and Toxicology, 28, 298–303.CrossRefGoogle Scholar
  36. Lounsbury-Billie, M. J., Rand, G. M., Cai, Y., & Bass, O. L., Jr. (2008). Metal concentrations in Osprey (Pandion haliaetus) populations in the Florida Bay estuary. Ecotoxicology, 17, 616–622.CrossRefGoogle Scholar
  37. Ma, W. C. (1987). Heavy metal accumulation in the mole, Talpa europaea, and earthworms as an indicator of metal bioavailability in terrestrial environments. Bulletin of Environmental Contamination and Toxicology, 39, 933–938.CrossRefGoogle Scholar
  38. Mateo, R., & Guitart, R. (2003). Heavy metal in livers of waterbirds from Spain. Archives of Environmental Contamination and Toxicology, 44, 398–404.CrossRefGoogle Scholar
  39. MEDMIN (2001). Estudio para el Manejo Ambiental en Microcuencas de 12 Zonas Mineras: Matilde, Viloco, Caracoles, Colquiri, Poopó, Antequera, Cañadón Antequera, La Lava, Chorolque, Uncía, Llallagua, Colquechaca. Technical Report. La Paz: MEDMIN (Medio Ambiente, Minería e Industria)/Viceministerio de Minería y Metalurgia.Google Scholar
  40. Molina, M. (2005). El desarrollo postnatal de la Pisacca en condiciones de cautiverio. In A. Garitano-Zavala (Ed.), La crianza rural de un ave silvestre del altiplano boliviano, La Pisacca (Nothoprocta ornata) (pp. 87–113). La Paz: Instituto de Ecología.Google Scholar
  41. Nam, D. H., Lee, D. P., & Koo, T. H. (2004a). Monitoring for lead pollution using feathers of feral pigeons (Columbia livia) from Korea. Environmental Monitoring and Assessment, 95, 13–22.CrossRefGoogle Scholar
  42. Nam, D. H., Lee, D. P., & Koo, T. H. (2004b). Factors causing variations of lead and cadmium accumulation of Feral Pigeons (Columba livia). Environmental Monitoring and Assessment, 95, 23–35.CrossRefGoogle Scholar
  43. Olivares, E. (2003). The effect of lead on the phytochemistry of Tithonia diversifolia exposed to roadside automotive pollution or grown in pots of Pb-supplemented soil. Brazilian Journal Plant Physiology, 15, 149–158.Google Scholar
  44. Oporto, C., Vandecasteele, C., & Smolders, E. (2007). Elevated Cadmium concentrations in potato tubers due to irrigation with river water contaminated by mining in Potosí, Bolivia. Journal of Environmental Quality, 36, 1181–1186.CrossRefGoogle Scholar
  45. Pain, D. J. (1996). Lead in waterfowl. In W. N. Beyer, G. H. Heinz, & A. W. Redmon-Norwood (Eds.), Environmental contaminants in wildlife: Interpreting tissue concentrations (pp. 251–263). Boca Raton: Lewis.Google Scholar
  46. Pearson, A. K., & Pearson, O. P. (1955). Natural history and breeding behavior of the tinamou Nothoprocta ornata. Auk, 72, 113–127.Google Scholar
  47. Pedersen, H. C., & Hylland, K. (2007). Metallothionein levels in willow ptarmigan (Lagopus lagopus) populations with different natural loads of cadmium. European Journal of Wildlife Research, 53, 142–152.CrossRefGoogle Scholar
  48. Pendleton, G. W., Whitworth, M. R., & Olsen, G. H. (1995). Accumulation and loss of arsenic and boron alone and in combination, in mallard ducks. Environmental Contamination and Toxicology, 14, 1357–1364.Google Scholar
  49. Pilastro, A., Congiu, L., Tallandini, L., & Turchetto, M. (1993). The use of bird feathers for the monitoring of Cadmium pollution. Archives of Environmental Contamination and Toxicology, 24, 355–358.CrossRefGoogle Scholar
  50. Richardson, M. E., Fox, M. R., & Fry, B. E. (1973). Pathological changes produced in Japanese Quail by ingestion of cadmium. Journal of Nutrition, 104, 323–338.Google Scholar
  51. Rios, B. (2002). Evaluación de la actividad minera en los alrededores del lago Poopó. In O. Rocha (Ed.), Diagnóstico de los recursos naturales y culturales de los lagos Poopó y Uru Uru, Oruro–Bolivia (pp. 167–186). La Paz: Convención RAMSAR, WCS/Bolivia.Google Scholar
  52. Rojas, J., & Vandecasteele, C. (2007). Influence of mining activities in the North of Potosi, Bolivia on the water quality of the Chayanta River, and its consequences. Environmental Monitoring and Assessment, 132, 321–330.CrossRefGoogle Scholar
  53. Roux, K. E., & Marra, P. P. (2007). The presence and impact of environmental Lead in Passerine birds along an urban to rural land use gradient. Archives of Environmental Contamination and Toxicology, 53, 261–268.CrossRefGoogle Scholar
  54. Sanabria, H. (2000). Resistance and the arts of domination, miners and the Bolivian State. Latin American Perspectives, 27, 56–81.CrossRefGoogle Scholar
  55. Sanchez-Chardi, A., Lopez-Fuster, M. J., & Nadal, J. (2007). Bioaccumulation of lead, mercury and cadmium in the greater white-toothed shrew, Crocidura russula from the Ebro Delta (NE Spain): Sex-and-age-dependent variation. Environmental Pollution, 145, 7–14.CrossRefGoogle Scholar
  56. Scheuhammer, A. M. (1987). The chronic toxicity of aluminium, cadmium, mercury and lead in birds: A review. Environmental Pollution, 46, 263–295.CrossRefGoogle Scholar
  57. SERGEOMIN (1999). Inventariación de recursos naturales renovables (hídricos) y no renovables (minerales e hidrocarburos) del departamento de Oruro. Boletín del Servicio Nacional de Geología y Minería, 24, 1–44.Google Scholar
  58. Shotyk, W., Krachler, M., & Chen, B. (2005). Antimony: Global environmental contaminant. Journal of Environmental Monitoring, 7, 1135–1136.CrossRefGoogle Scholar
  59. UNEP/OEA (1996). Diagnóstico ambiental del sistema Titicaca-Desaguadero-Poopó-Salar de Coipasa (Sistema TDPS) Bolivia-Perú. Washington DC: Departamento de Desarrollo Regional y Medio Ambiente/Secretaría General de la Organización de los Estados Americanos.Google Scholar
  60. Van Ryckeghem, M. (1997). Contaminación Minero Metalúrgica y Salud Pública en la cuenca del Lago Poopó - Presentación del “Plan de Gestión Ambiental”, documento final del Proyecto Piloto Oruro (PPO). Eco Andino, 2, 27–60.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Álvaro Garitano-Zavala
    • 1
  • Javier Cotín
    • 2
  • Miquel Borràs
    • 3
  • Jacint Nadal
    • 2
  1. 1.Unidad de Manejo y Conservación de Fauna, Instituto de EcologíaUniversidad Mayor de San AndrésLa PazBolivia
  2. 2.Secció de Vertebrats, Departament de Biologia Animal, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
  3. 3.Unitat de Toxicologia Experimental i Ecotoxicologia, Centre de Recerca en ToxicologiaPlataforma Tecnològica del Parc Científic de BarcelonaBarcelonaSpain

Personalised recommendations