Environmental Monitoring and Assessment

, Volume 168, Issue 1–4, pp 461–479

The relative influence of nutrients and habitat on stream metabolism in agricultural streams

  • Jill D. Frankforter
  • Holly S. Weyers
  • Jerad D. Bales
  • Patrick W. Moran
  • Daniel L. Calhoun
Open Access
Article

Abstract

Stream metabolism was measured in 33 streams across a gradient of nutrient concentrations in four agricultural areas of the USA to determine the relative influence of nutrient concentrations and habitat on primary production (GPP) and respiration (CR-24). In conjunction with the stream metabolism estimates, water quality and algal biomass samples were collected, as was an assessment of habitat in the sampling reach. When data for all study areas were combined, there were no statistically significant relations between gross primary production or community respiration and any of the independent variables. However, significant regression models were developed for three study areas for GPP (r2 = 0.79–0.91) and CR-24 (r2 = 0.76–0.77). Various forms of nutrients (total phosphorus and area-weighted total nitrogen loading) were significant for predicting GPP in two study areas, with habitat variables important in seven significant models. Important physical variables included light availability, precipitation, basin area, and in-stream habitat cover. Both benthic and seston chlorophyll were not found to be important explanatory variables in any of the models; however, benthic ash-free dry weight was important in two models for GPP.

Keywords

Primary production Respiration Nutrient enrichment United States Streams Agricultural 

References

  1. Arar, E. J., & Collins, G. B. (1997a). U. S. environmental protection agency method 445.0, in vitro determination of chlorophyll a and pheophytin a in marine and freshwater algae by fluorescence, revision 1.2. Cincinnati: U.S. Environmental Protection Agency, National Exposure Research Laboratory, Office of Research and Development.Google Scholar
  2. Arar, E. J., & Collins, G. B. (1997b). U. S. environmental protection agency method 445.0, in vitro determination of chlorophyll a and pheophytin a in marine and freshwater algae by fluorescence, revision 1.2.—errata sheet. Cincinnati: U.S. Environmental Protection Agency, National Exposure Research Laboratory, Office of Research and Development.Google Scholar
  3. Bales, J. D., & Nardi, M. R. (2007). Automated routines for calculation of whole-stream metabolism: Theoretical background and user’s guide. U.S. Geological Survey Techniques and Methods Book 4, Chapter C2.Google Scholar
  4. Biggs, B. J. F. (1996). Patterns in benthic algae in streams. In R. J. Stevenson, M. L. Bothworth, & R. L. Lowe (Eds.), Algal ecology: Freshwater benthic ecosystems (pp. 31–76). San Diego: Academic.Google Scholar
  5. Biggs, B. J. F. (2000). Eutrophication of streams and rivers: Dissolved nutrient–chlorophyll relationships for benthic algae. Journal of the North American Benthological Society, 19, 17–31.CrossRefGoogle Scholar
  6. Biggs, B. J. F., & Kilroy, C. (2000). Stream periphyton monitoring manual. Christchurch: National Institute of Water and Atmospheric Research.Google Scholar
  7. Biggs, B. J. F., Smith, R. A., & Duncan, M. J. (1999). Velocity and sediment disturbance of periphyton in headwater streams: Biomass and metabolism. Journal of the North American Benthological Society, 18, 222–241.CrossRefGoogle Scholar
  8. Bott, T. L. (1996). Primary productivity and community response. In F. R. Hauer, & G. A. Lamberti (Eds.), Methods in stream ecology (pp. 533–556). San Diego: Academic.Google Scholar
  9. Bott, T. L., Brock, J. T., Cushing, C. E., Gregory, S. V., King, D., & Petersen, R. C. (1978). A comparison of methods for measuring primary productivity and community respiration in streams. Hydrobiologia, 60, 3–12.CrossRefGoogle Scholar
  10. Bott, T. L., Brock, J. T., Dunn, C. S., Naiman, R. J., Ovink, R. W., & Petersen, R. C. (1985). Benthic community metabolism in four temperate stream systems: An inter-biome comparison and evaluation of the river continuum concept. Hydrobiologia, 123, 3–45.CrossRefGoogle Scholar
  11. Bott, T. L., Newbold, J. D., & Arscott, D. B. (2006). Ecosystem metabolism in Piedmont streams: Reach geomorphology modulates the influence of riparian vegetation. Ecosystems, 9, 398–421.CrossRefGoogle Scholar
  12. Brenton, R. W., & Arnett, T. L. (1993). Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of dissolved organic carbon by UV-promoted persulfate oxidation and infrared spectrometry. U.S. Geological Survey Open-File Report 92-480.Google Scholar
  13. Brightbill, R. A., & Munn, M. D. (2008). Environmental and biological data of the nutrient enrichment effects on stream ecosystems project of the National Water-Quality Assessment Program, 2003–04. U.S. Geological Survey Data Series 345.Google Scholar
  14. Bunn, S. E., Davies, P. M., & Mosisch, T. D. (1999). Ecosystem measures of river health and their response to riparian and catchment degradation. Freshwater Biology, 41, 333–345.CrossRefGoogle Scholar
  15. Chételat, J., Pick, F. R., Morin, A., & Hamilton, P. B. (1999). Periphyton biomass and community composition in rivers of different nutrient status. Canadian Journal of Fisheries and Aquatic Science, 56, 560–569.CrossRefGoogle Scholar
  16. Clarke, K. R., & Gorley, R. N. (2006). Primer v6: User manual/tutorial. Plymouth: Plymouth Marine Laboratory.Google Scholar
  17. Clawges, R. M., & Price, C. P. (1999). Digital data set describing surficial geology in the conterminous United States. U.S. Geological Survey Open-File Report 99–77 [digital map]. http://water.usgs.gov/lookup/getspatial?ofr99-77_geol75m. Accessed April 2003.
  18. Dodds, W. K., & Welch, E. B. (2000). Establishing nutrient criteria in streams. Journal of the North American Benthological Society, 19, 186–196.CrossRefGoogle Scholar
  19. Dodds, W. K., Jones, J. R., & Welch, E. B. (1998). Suggested classification of stream trophic state: Distributions of temperate stream types by chlorophyll, total nitrogen, and phosphorus. Water Research, 32, 1455–1462.CrossRefGoogle Scholar
  20. Dodds, W. K., Smith, V. H., & Lohman, K. (2002). Nitrogen and phosphorus relationships to benthic algal biomass in temperate streams. Canadian Journal of Fisheries and Aquatic Science, 59, 865–874.CrossRefGoogle Scholar
  21. Dodds, W. K., Smith, V. H., & Lohman, K. (2006). Erratum: Nitrogen and phosphorus relationships to benthic algal biomass in temperate streams. Canadian Journal of Fisheries and Aquatic Science, 63, 1190–1191.CrossRefGoogle Scholar
  22. Duff, J. H., Tesoriero, A. J., Richardson, W. B., Strauss, E. A., & Munn, M. D. (2008). Whole stream response to nitrate loading in three streams draining agricultural landscapes. Journal of Environmental Quality, 37, 1133–1144.CrossRefGoogle Scholar
  23. Fishman, M. J., ed. (1993). Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of inorganic and organic constituents in water and fluvial sediments. U.S. Geological Survey Open-File Report 93–125.Google Scholar
  24. Fitzpatrick, F. A., Waite, I. R., D’Arconte, P. J., Meador, M. R., Maupin, M. A., & Gurtz, M. E. (1998). Revised methods for characterizing stream habitat in the National Water-Quality Assessment Program. U.S. Geological Survey Water-Resources Investigations Report 98-4052.Google Scholar
  25. Fuhrer, G. J., Gilliom, R. J., Hamilton, P. A., Morace, J. L., Nowell, L. H., Rinella, J. F., et al. (1999). The quality of our nation’s water: Nutrients and pesticides. U.S. Geological Survey Circular 1225.Google Scholar
  26. Hall, C. A. (1972). Migration and metabolism in a temperate stream ecosystem. Ecology, 93, 585–604.CrossRefGoogle Scholar
  27. Hall, R. O., & Tank, J. L. (2003). Ecosystem metabolism controls nitrogen uptake in streams in Grand Teton National Park, Wyoming. Limnology and Oceanography, 48, 1120–1128.CrossRefGoogle Scholar
  28. Houser, J. N., & Mulholland, P. J. (2005). Catchment disturbance and stream metabolism: Patterns in ecosystem respiration and gross primary production along a gradient of upland soil and vegetation disturbance. Journal of the North American Benthological Society, 24, 538–552.Google Scholar
  29. Hunt, C. D. (1979). National Atlas of the United States of America — Surficial Geology. U.S. Geological Survey, NAC-P-0204-75M-O [map].Google Scholar
  30. Johnson, M. R., & Zelt, R. B. (2005). Protocols for mapping and characterizing land use/land cover in riparian zones. U.S. Geological Survey Open-File Report 2005-1302.Google Scholar
  31. Kilpatrick, F. A., & Wilson, J. F. (1989). Measurement of time of travel in streams by dye tracing. Techniques of Water-Resources Investigations of the United States Geological Survey, Book 3, Chapter A9.Google Scholar
  32. Kilpatrick, F. A., Rathbun, R. E., Yotsukura, N., Garker, G. W., & DeLong, L. L. (1989). Determination of stream reaeration coefficients by use of tracers. Techniques of Water-Resources Investigations of the United States Geological Survey, Book 3, Chapter A18.Google Scholar
  33. King, P. B., & Beikman, H. M. (1974a). Explanatory text to accompany the geologic map of the United States. U.S. Geological Survey Professional Paper 901.Google Scholar
  34. King, P. B., & Beikman, H. M. (1974b). Geologic map of the United States (exclusive of Alaska and Hawaii) on a scale of 1:2,500,000. U.S. Geological Survey, 3 color plates.Google Scholar
  35. Lam, L. (2001). An introduction to S-PLUS for windows. Amsterdam: CANdiensten.Google Scholar
  36. Marzolf, E. R., Mulholland, P. J., & Steinman, A. D. (1994). Improvements to the diurnal upstream–downstream dissolved oxygen change technique for determining whole-stream metabolism in small streams. Canadian Journal of Fisheries and Aquatic Science, 51, 1591–1599.CrossRefGoogle Scholar
  37. McTammany, M. E., Webster, J. R., Benfield, E. F., & Neatrour, M. A. (2003). Longitudinal patterns of metabolism in a southern Appalachian river. Journal of the North American Benthological Society, 22, 359–370.CrossRefGoogle Scholar
  38. McTammany, M. E., Benfield, E. F., & Webster, J. R. (2007). Recovery of stream ecosystem metabolism from historical agriculture. Journal of the North American Benthological Society, 26, 532–545.CrossRefGoogle Scholar
  39. Melching, C. S., & Flores, H. E. (1999). Reaeration equations derived from U.S. Geological Survey database. Journal of Environmental Engineering, 125, 407–414.CrossRefGoogle Scholar
  40. Mosisch, T. D., Bunn, S. E., & Davies, P. M. (2001). The relative importance of shading and nutrients on algal production in subtropical streams. Freshwater Biology, 46, 1269–1278.CrossRefGoogle Scholar
  41. Moulton, S. R., II, Kennan, J. G., Goldstein, R. M., & Hambrook, J. A. (2002). Revised protocols for sampling algal, invertebrate, and fish communities as part of the National Water-Quality Assessment Program. U.S. Geological Survey Open-File Report 02-150.Google Scholar
  42. Mueller, D. K., & Spahr, N. E. (2006). Nutrients in streams and rivers across the Nation—1992–2001. U.S. Geological Survey Scientific Investigations Report 2006-5107.Google Scholar
  43. Mulholland, P. J., Marzolf, E. R., Webster, J. R., Hart, D. R., & Hendricks, S. P. (1997). Evidence that hyporheic zones increase heterotrophic metabolism and phosphorus uptake in forest streams. Limnology and Oceanography, 42, 443–451.CrossRefGoogle Scholar
  44. Mulholland, P. J., Fellows, C. S., Tank, J. L., Grimm, N. B., Webster, J. R., Hamilton, S. K., et al. (2001). Inter-biome comparison of factors controlling stream metabolism. Freshwater Biology, 46, 1503–1517.CrossRefGoogle Scholar
  45. Mulholland, P. J., Helton, A. M., Poole, G. C., Hall, R. O., Jr., Hamilton, S. K., Peterson, B. J., et al. (2008). Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature, 452, 202–205.CrossRefGoogle Scholar
  46. Nakagaki, N., & Wolock, D. M. (2005). Estimation of agricultural pesticide use in drainage basins using land cover maps and county pesticide data. U.S. Geological Survey Open-File Report 2005-1188.Google Scholar
  47. National Oceanic and Atmospheric Administration (2008). National Climatic Data Center, United States surface data, monthly summary, DS 3220. http://www.ncdc.noaa.gov/oa/mpp/digitalfiles.html. Accessed 30 September 2008.
  48. Odum, H. T. (1956). Primary production in flowing waters. Limnology and Oceanography, 1, 102–117.CrossRefGoogle Scholar
  49. Odum, H. T., & Hoskin, C. M. (1958). Comparative studies on the metabolism of marine waters. Publications of the Institute of Marine Science, University of Texas, 5, 16–46.Google Scholar
  50. Ortiz-Zayas, J. R., Lewis, W. M. Jr., Saunders, J. F., III, & McCutchan, J. H., Jr. (2005). Metabolism of a tropical rainforest stream. Journal of the North American Benthological Society, 24, 769–783.CrossRefGoogle Scholar
  51. Patton, C. J., & Kryskalla, J. R. (2003). Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory—Evaluation of alkaline persulfate digestion as an alternative to kjeldahl digestion for determination of total and dissolved nitrogen and phosphorus in water. U.S. Geological Survey Water-Resources Investigations Report 03-4174.Google Scholar
  52. Peterson, B. J., Wolheim, W. M., Mulholland, P. J., Webster, J. R., Meyer, J. L., Tank, J. L., et al. (2001). Control of nitrogen export from watersheds by headwater streams. Nature, 292, 86–90.Google Scholar
  53. Rabalais, N. N., Turner, R. E., & Scavia, D. (2002). Beyond science into policy: Gulf of Mexico hypoxia and the Mississippi River. BioScience, 52, 129–142.CrossRefGoogle Scholar
  54. Royer, T. V., Tank, J. L., & David, M. B. (2004). Transport and fate of nitrate in headwater agricultural streams. Journal of Environmental Quality, 33, 1296–1304.CrossRefGoogle Scholar
  55. Royer, T. V., David, M. B., Gentry, L. E., Mitchell, C. A., Starks, K. M., Heatherly, T. II, et al. (2008). Assessment of chlorophyll-a as a criterion for establishing nutrient standards in the streams and rivers of Illinois. Journal of Environmental Quality, 37, 437–447.CrossRefGoogle Scholar
  56. Ruddy, B. C., Lorenz, D. L., & Mueller, D. K. (2006). County-level estimates of nutrient inputs to the land surface of the conterminous United States, 1982–2001. U.S. Geological Survey Scientific Investigations Report 2006-5012.Google Scholar
  57. Schruben, P. G., Arndt, R. E., & Bawiec, W. J. (1998). Geology of the conterminous United States at 1:2,500,000 scale: A digital representation of the 1974 P.B. King and H.M. Beikman map. U.S. Geological Survey Data Series 11, [digital data]. http://pubs.usgs.gov/dds/dds11/. Accessed June 1999.
  58. Solar Pathfinder (2002). Instruction manual for the solar pathfinder. Linden: Solar Pathfinder.Google Scholar
  59. Stevenson, R. J., & Stoermer, E. F. (1981). Quantitative differences between benthic algal communities along a depth gradient in Lake Michigan. Journal of Phycology, 17, 29–36.CrossRefGoogle Scholar
  60. Uehlinger, U., & Brock, J. T. (2005). Periphyton metabolism along a nutrient gradient in a desert river (Truckee River, Nevada, USA). Aquatic Sciences, 67, 507–516.Google Scholar
  61. Uehlinger, U., & Naegeli, M. W. (1998). Ecosystem metabolism, disturbance, and stability in a prealpine gravel bed river. Journal of the North American Benthological Society, 17, 165–178.CrossRefGoogle Scholar
  62. U. S. Department of Agriculture (2002). 2002 Census of Agriculture. National Agricultural Statistics Service. http://www.nass.usda.gov/Census_of_Agriculture/index.asp. Accessed on 30 April 2007.
  63. U. S. Environmental Protection Agency (1997). Determination of carbon and nitrogen in sediments and particulates of estuarine/coastal waters using elemental analysis, revision 1.4. Cincinnati: U.S. Environmental Protection Agency, National Exposure Research Laboratory, Office of Research and Development.Google Scholar
  64. U. S. Environmental Protection Agency (2000). Nutrient criteria technical guidance manual—Rivers and streams. Washington, D.C.: U.S. Environmental Protection Agency, Office of Water report EPA-822-B-00-002.Google Scholar
  65. U. S. Environmental Protection Agency (2002a). National Water Quality Inventory—2000 Report. Washington, D.C.: U.S. Environmental Protection Agency Office of Water report EPA-841-R-02-01. Accessed at http://www.epa.gov/305b/2000report/ on 30 April, 2007.Google Scholar
  66. U. S. Environmental Protection Agency (2002b). Summary table for nutrient criteria documents. Washington, D.C.: U. S. Environmental Protection Agency Office of Water report. http://www.epa.gov/waterscience/criteria/nutrient/ecoregions/files/sumtable.pdf. Accessed on 31 October, 2008.Google Scholar
  67. U. S. Geological Survey (1999). National land cover data 1992 (NLCD 1992), [digital map]. http://edc.usgs.gov/products/landcover/nlcd.html. Accessed August 2003.
  68. U. S. Geological Survey and U. S. Environmental Protection Agency (2003). National Hydrography Dataset (NHD) [digital data]. http://nhd.usgs.gov/. Accessed June 2003.
  69. Vogelmann, J. E., Howard, S. M., Limin, Y., Larson, C. R., Wyie, B. K., & Van Driel, N. (2001). Completion of the 1990’s national land cover dataset for the conterminous United States from Landsat Thematic Mapper data and ancillary data sources. Photogrammetric Engineering and Remote Sensing, 67, 650–662.Google Scholar
  70. Wagner, R. J., Boulger, R. W. Jr., Oblinger, C. J., & Smith, B. A. (2006). Guidelines and standard procedures for continuous water-quality monitors: Station operation, record computation, and data reporting. U.S. Geological Survey Techniques and Methods Report 1-D3, 51 p. + 8 attachments. http://pubs.usgs.gov/tm/2005/tm1D3/pdf/TM1D3.pdf. Accessed 22 May 2006.
  71. Welch, E.B., Jacoby, J.M., Horner, R.R. & Seeley, M.R. (1998). Nuisance biomass levels of periphytic algae in streams. Hydrobiologia, 157, 161-168.Google Scholar
  72. Wiley, M. J., Osbourne, L. L., & Larimore, R. W. (1990). Longitudinal structure of an agricultural prairie river system and its relationship to current stream ecosystem theory. Canadian Journal of Fisheries and Aquatic Science, 47, 373–384.CrossRefGoogle Scholar
  73. Young, R. G., & Huryn, A. D. (1996). Interannual variation in discharge controls ecosystem metabolism along a grassland river continuum. Canadian Journal of Fisheries and Aquatic Science, 53, 2199–2211.CrossRefGoogle Scholar
  74. Young, R. G., & Huryn, A. D. (1999). Effects of land use on stream metabolism and organic matter turnover. Ecological Applications, 9, 1359–1376.CrossRefGoogle Scholar
  75. YSI Incorporated (2002). Environmental monitoring systems manual. Yellow Springs: YSI.Google Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  • Jill D. Frankforter
    • 1
  • Holly S. Weyers
    • 2
  • Jerad D. Bales
    • 3
  • Patrick W. Moran
    • 4
  • Daniel L. Calhoun
    • 5
  1. 1.US Geological SurveyLincolnUSA
  2. 2.US Geological SurveyDoverUSA
  3. 3.US Geological SurveyRaleighUSA
  4. 4.US Geological SurveyTacomaUSA
  5. 5.US Geological SurveyAtlantaUSA

Personalised recommendations