Advertisement

Environmental Monitoring and Assessment

, Volume 166, Issue 1–4, pp 347–357 | Cite as

Heavy metal contamination in water, soil, and vegetables of the industrial areas in Dhaka, Bangladesh

  • Jasim Uddin Ahmad
  • Md. Abdul Goni
Article

Abstract

Concentrations of Cu, Zn, Pb, Cr, Cd, Fe, and Ni have been estimated in soils and vegetables grown in and around an industrial area of Bangladesh. The order of metal contents was found to be Fe > Cu > Zn > Cr > Pb > Ni > Cd in contaminated irrigation water, and a similar pattern Fe > Zn > Ni > Cr > Pb > Cu > Cd was also observed in arable soils. Metal levels observed in different sources were compared with WHO, SEPA, and established permissible levels reported by different authors. Mean concentration of Cu, Fe, and Cd in irrigation water and Cd content in soil were much above the recommended level. Accumulation of the heavy metals in vegetables studied was lower than the recommended maximum tolerable levels proposed by the Joint FAO/WHO Expert Committee on Food Additives (1999), with the exception of Cd which exhibited elevated content. Uptake and translocation pattern of metal from soil to edible parts of vegetables were quite distinguished for almost all the elements examined.

Keywords

Trace elements Plant uptake Bioconcentration factor Wastewater irrigation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alam, M. G. M., Snow, E. T., & Tanaka, A. (2003). Arsenic and heavy metal concentration of vegetables grown in Samta village, Bangladesh. The Science of the Total Environment, 111, 811–815.Google Scholar
  2. Allen, S. E., Grimshaw, H. M., & Rowland, A. P. (1986). Chemical analysis. In P. D. Moore, S. B. Chapman (Eds.), Methods in plant ecology (pp. 285–344). Oxford: Blackwell.Google Scholar
  3. Al-Nakshabandi, G. A., Saqqar, M. M., Shatanawi, M. R., Faygad, M., & Al-Horani, H. (1997). Some environmental problems associated with the use of treated waste water for irrigation in Jordan. Agricultural Water Management, 34, 81–94. doi: 10.1016/S0378-3774(96)01287-5.CrossRefGoogle Scholar
  4. APHA (American Public Health Association) (1985). Standard methods for the examination of water and wastewater. Washington DC: American Public Health Association.Google Scholar
  5. Arora, M., Kiran, B., Rani, A., Rani, S., Kaur, B., & Mittal, M. (2008). Heavy metal accumulation in vegetables irrigated with water from different sources. Food Chemistry, 111, 811–815. doi: 10.1016/j.foodchem.2008.04.049.CrossRefGoogle Scholar
  6. Awashthi, S. K. (2000). Prevention of Food Adulteration Act No. 37 of 1954. Central and State rules as amended for 1999 (3rd ed.). New Delhi: Ashoka Law House.Google Scholar
  7. Bowen, H. J. M. (1966). Trace elements in biochemistry (p. 241). New York: Academic.Google Scholar
  8. Chen, Y., Wang, C., & Wang, Z. (2005). Residues and sources identification of persistent organic pollutants in farmland soils irrigated by effluents from biological treatment plants. Environment International, 31, 778–783. doi: 10.1016/j.envint.2005.05.024.CrossRefGoogle Scholar
  9. Codex Alimentarious Commission (1984). Contaminants, Joint FAO/WHO Food standards Program (Vol. XVII, 1st ed.). Geneva: Codex Alimentarious.Google Scholar
  10. Dogheim, S. M., Ashraf, El. M. M., Alla, S. A. G., Khorshid, M. A., & Fahmy, S. M. (2004). Pesticides and heavy metal levels in Egyptian leafy vegetables and some aromatic medicinal plants. Food Additives and Contaminants, 21, 323–330. doi: 10.1080/02652030310001656361.CrossRefGoogle Scholar
  11. Grytsyuk, N., Arapis, G., Percpelyatnikova, L., Ivanova, T., & Vynogradska, V. (2006). Heavy metals effects on forage crops yields and estimation of elements accumulation in plants as affected by soil. The Science of the Total Environment, 354(2–3), 224–231. doi: 10.1016/j.scitotenv.2005.01.007.Google Scholar
  12. Gupta, N., Khan, D. K., & Santra, S. C. (2008). An assessment of heavy metal contamination in vegetables grown in wastewater-irrigated areas of Titagarh, West Bengal, India. Bulletin of Environmental Contamination and Toxicology, 80, 115–118. doi: 10.1007/s00128-007-9327-z.CrossRefGoogle Scholar
  13. Hasan, N., & Ahmad, K. (2000). Intra-familial distribution of food in rural Bangladesh. Institute of Nutrition and Food Science, University of Dhaka, Bangladesh. Internet pages. Available from http://www.unu.edu/food/8F064e/8F064E05.htm, 11/9/01.
  14. Joint FAO/WHO Expert Committee on Food Additives (1999). Summary and conclusions. In 53rd Meeting, Rome, 1–10 June.Google Scholar
  15. Kabata-Pendias, A., & Pendias, H. (1992). Trace elements in soil and plants (2nd ed., p. 365). Boca Raton: CRC.Google Scholar
  16. Khan, S., Cao, Q., Zheng, Y. M., Huang, Y. Z., & Zhu, Y. G. (2008). Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environmental Pollution, 152, 686–692. doi: 10.1016/j.envpol.2007.06.056.CrossRefGoogle Scholar
  17. Khan, Y. S. A., Hossain, M. S., Hossain, S. M. G. M. A., & Halimuzzaman, A. H. M. (1998). An environment of trace metals in the GMB Estuary. Journal of Remote Sensing and Environment, 2, 103–113.Google Scholar
  18. Kisku, G. C., Barman, S. C., & Bhargava, S. K. (2000). Contamination of soil and plants with potentially toxic elements irrigated with mixed industrial effluent and its impact on the environment. Water, Air, and Soil Pollution, 120, 121–137. doi: 10.1023/A:1005202304584.CrossRefGoogle Scholar
  19. Liu, W. X., Shen, L. F., Liu, J. W., & Wang, Y. W. (2007). Uptake of toxic heavy metals by rice (Oryza sativa L.) cultivated in the agricultural soil near Zhengzhou City, People’s Republic of China. Bulletin of Environmental Contamination and Toxicology, 79, 209–213. doi: 10.1007/s00128-007-9164-0.CrossRefGoogle Scholar
  20. Liu, W. H., Zhao, J. Z., Ouyang, Z. Y., Soderlund, L., & Liu, G. H. (2005). Impacts of sewage irrigation on heavy metals distribution and contamination. Environment International, 31, 805–812. doi: 10.1016/j.envint.2005.05.042.CrossRefGoogle Scholar
  21. Liu, W., Li, X., Li, H. H. Sr, & Wang, Y. W. (2006). Heavy metal accumulation of edible vegetables cultivated in agricultural soil in the Suburb of Zhengzhou City, People’s Republic of China. Bulletin of Environmental Contamination and Toxicology, 76, 163–170. doi: 10.1007/s00128-006-0981-3.CrossRefGoogle Scholar
  22. Mapanda, F., Mangwayana, E. N., Nyamangara, J., & Giller, K. E. (2005). The effect of long-term irrigation using wastewater on heavy metal contents of soils under vegetables in Harare, Zimbabwe. Agriculture Ecosystems & Environment, 107, 151–165. doi: 10.1016/j.agee.2004.11.005.CrossRefGoogle Scholar
  23. Mingorance, M. D., Valdes, B., & Oliva Rossini, S. (2007). Strategies of heavy metal uptake by plants growing under industrial emissions. Environment International, 33(4), 514–520. doi: 10.1016/j.envint.2007.01.005.CrossRefGoogle Scholar
  24. Muchuweti, M., Birkett, J. W., Chinyanga, E., Zvauya, R., Scrimshaw, M. D., & Lester, J. (2006). Heavy metal content of vegetables irrigated with mixture of wastewater and sewage sludge in Zimbabwe: Implications for human health. Agriculture Ecosystems & Environment, 112, 41–48. doi: 10.1016/j.agee.2005.04.028.CrossRefGoogle Scholar
  25. Overesch, M., Rinklebe, J., Broll, G., & Neue, H. U. (2007). Metal and arsenic in soils and corresponding vegetation at central Elbe River flood plains (Germany). Environmental Pollution, 145(3), 800–812. doi: 10.1016/j.envpol.2006.05.016.CrossRefGoogle Scholar
  26. Pescod, M. B. (1992). Wastewater treatment and use in agriculture. FAO Irrigation and Drainage Paper 47. Rome: Food and Agriculture Organization of the United Nations.Google Scholar
  27. Rattan, R. K., Datta, S. P., Chonkar, P. K., Suribabu, K., & Singh, A. K. (2005). Long term impact of irrigation with sewage effluents on heavy metal contents in soil, crops and ground water—A case study. Agriculture Ecosystems & Environment, 109, 310–322. doi: 10.1016/j.agee.2005.02.025.CrossRefGoogle Scholar
  28. SEPA (2005). The limits of pollutants in food. China: State Environmental Protection Administration. GB2762-2005.Google Scholar
  29. Sharma, R. K., Agrawal, M., & Marshall, F. (2006). Heavy metal contamination in vegetables grown in wastewater irrigated areas of Varanasi, India. Bulletin of Environmental Contamination and Toxicology, 77, 312–318. doi: 10.1007/s00128-006-1065-0.CrossRefGoogle Scholar
  30. Sharma, R. K., Agrawal, M., & Marshall, F. (2007). Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxicology and Environmental Safety, 66, 258–266. doi: 10.1016/j.ecoenv.2005.11.007.CrossRefGoogle Scholar
  31. Sharma, R. K., Agrawal, M., & Marshall, F. (2008). Heavy metal (Cu, Zn, Cd and Pb) contamination of vegetables in urban India: A case study in Varanasi. Environmental Pollution, 154, 254–263.CrossRefGoogle Scholar
  32. Singh, K. P., Mohan, D., Sinha, S., & Dalwani, R. (2004). Impact assessment of treated/untreated wastewater toxicants discharged by sewage treatment plants on health, agricultural, and environmental quality in the wastewater disposal area. Chemosphere, 55, 227–255. doi: 10.1016/j.chemosphere.2003.10.050.CrossRefGoogle Scholar
  33. Tandi, N. K., Nyamangara, J., & Bangira, C. (2004). Environmental and potential health effects of growing leafy vegetables on soil irrigated using sewage sludge and effluent: A case of Zn and Cu. Journal of Environmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes, 39, 461–471. doi: 10.1081/PFC-120035930.Google Scholar
  34. Temmerman, L. O., Hoeing, M., & Scokart, P. O. (1984). Determination of ‘normal’ levels and upper limit values of trace elements in soils. Zournal Pflanzenernahr Bodenkd, 147, 687–694. doi: 10.1002/jpln.19841470606.CrossRefGoogle Scholar
  35. Turkdogan, M. K., Killicel, F., Kara, K., Tuncer, I., & Uygan, I. (2002). Heavy metals in soil, vegetables and fruits in the endemic upper gastrointestinal cancer region of Turkey. Environmental Toxicology and Pharmacology, 13, 175–179. doi: 10.1016/S1382-6689(02)00156-4.CrossRefGoogle Scholar
  36. Wong, S. C., Li, X. D., Zhang, G., Qi, S. H., & Min, Y. S. (2002). Heavy metals in agricultural soils of the Pearl River Delta, South China. Environmental Pollution, 119, 33–44. doi: 10.1016/S0269-7491(01)00325-6.CrossRefGoogle Scholar
  37. World Health Organization (1996). Health criteria and other supporting information. In Guidelines for drinking water quality (Vol. 2, 2nd ed., pp. 31–388). Geneva: World Health Organization. http://www.cababstractsplus.org/abstracts/Abstract.aspx?AcNo=19962006478.Google Scholar
  38. Yadav, R. K., Goyal, B., Sharma, R. K., Dubey, S. K., & Minhas, P. S. (2002). Post irrigation impact of domestic sewage effluent on composition of soils, crops and ground water—a case study. Environment International, 28, 481–486. doi: 10.1016/S0160-4120(02)00070-3.CrossRefGoogle Scholar
  39. Yang, Q. W., Shu, W. S., Qiu, J. W., Wang, H. B., & Lan, C. Y. (2004). Lead in paddy soils and rice plants and its potential health risk around Lechang Lead/Zinc Mine, Guangdong, China. Environment International, 30(4), 883–889. doi: 10.1016/j.envint.2004.02.002.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of ChemistryJahangirnagar UniversityDhakaBangladesh
  2. 2.Department of ChemistryBangladesh University of Engineering & TechnologyDhakaBangladesh

Personalised recommendations