Environmental Monitoring and Assessment

, Volume 166, Issue 1–4, pp 303–312 | Cite as

Distribution, correlation, and source apportionment of selected metals in tannery effluents, related soils, and groundwater—a case study from Multan, Pakistan

  • Saadia R. Tariq
  • N. Shaheen
  • A. Khalique
  • Munir H. ShahEmail author


In order to study the distribution, correlation, and apportionment of selected metals, the tannery effluent, related soil, and groundwater samples were collected from Multan, Pakistan, and analyzed on flame atomic absorption spectrophotometer. Among the selected metals, Na, Ca, K, Cr, and Mg revealed dominant concentrations with average values of 5,499, 945, 565, 209, and 107 mg/L and 2,634, 330, 484, 14.1, and 60.5 mg/L in the effluents and groundwater, respectively, whereas the mean metal levels in soil samples were 10,026, 6,726, 9,242, 476, and 9,857 mg/kg. Overall, the mean metal concentrations in the tannery effluents, groundwater, and related soils reveal following order, respectively: Na > Ca > K > Cr > Mg > Ni > Fe > Zn > Co > Pb > Mn > Cd; Na > K > Ca > Mg > Cr > Zn > Ni > Pb > Fe > Co > Mn > Cd; Na > Mg > K > Ca > Cr > Co > Ni > Fe > Pb > Mn > Zn > Cd. Generally, the metal distribution in tannery effluents, soils, and groundwater was found to be random as evidenced by large differences between mean and median values as well as considerably higher standard deviation and skewness values. The selected metal data were also subjected to correlation study to investigate the covariation of metal levels in the three media. The source apportionment of the metal data in the effluents, soils, and groundwater was carried out using principal component analysis in addition to basic statistical and correlation analyses. The source apportionment studies evidenced the gross contamination of groundwater and soils in the vicinity of tanning industrial units in Multan. The current mean metal levels in the soil and groundwater were found to be considerably higher compared with the background concentration levels and WHO guideline values.


Correlation Groundwater Metals Principal component analysis Soil Tannery effluents 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrahams, P. W. (2002). Soils, their implications to human health. The Science of the Total Environment, 291, 1–32. doi: 10.1016/S0048-9697(01)01102-0.CrossRefGoogle Scholar
  2. Barzilay, J. I., Weinberg, W. G., & Eley, J. W. (1999). The water we drink: Water quality and its effects on health. New Brunswick: Rutgers University Press.Google Scholar
  3. Buljan, J. (1996). Pollution limits for discharge of tannery effluents into water bodies and severs. World Leather, 9, 65–68.Google Scholar
  4. Chandra, R., Pandey, P. K., & Srivastava, A. (2004). Comparative toxicological evaluation of untreated and treated tannery effluent with Nostoc muscorum L. (Algal Assay) and Microtox bioassay. Environmental Monitoring and Assessment, 95, 287–294. doi: 10.1023/B:EMAS.0000029909.87977.a5.CrossRefGoogle Scholar
  5. Exposito, E., Ingles, M., Iniesta, J., Gonzalez-Garcia, J., Bonete, P., Garcia-Garcia, V., & Montiel, V. (1999). Removal of heavy metals from wastewater by electro-chemical treatment. Chemical Engineering Education, 33, 172–176.Google Scholar
  6. Federal Bureau of Statistics (2003). Pakistan statistical year book. Government of Pakistan.Google Scholar
  7. Jolliffe, I. T. (1986). Principal component analysis. New York: Springer.Google Scholar
  8. Kisku, G. C., Barman, S. G., & Bhargara, S. K. (2000). Contamination of soil and plants with potentially toxic elements irrigated with mixed industrial effluents and its impact on the environment. Water, Air, and Soil Pollution, 120, 121–137. doi: 10.1023/A:1005202304584.CrossRefGoogle Scholar
  9. Li, Z., & Shuman, L. M. (1996). Heavy metal movement in metal contaminated soil profiles. Soil Science, 161, 656–666. doi: 10.1097/00010694-199610000-00003.CrossRefGoogle Scholar
  10. Linde, M., Bengtsson, H., & Oborn, I. (2001). Concentrations and pools of heavy metals in urban soils in Stockholm, Sweden. Water Air and Soil Pollution Focus, 1, 83–101. doi: 10.1023/A:1017599920280.CrossRefGoogle Scholar
  11. Manzoor, S., Shah, M. H., Shaheen, N., Khalique, A., & Jaffar, M. (2006). Multivariate analysis of trace metals in textile effluents in relation to soil and groundwater. Journal of Hazardous Materials, 137, 31–37. doi: 10.1016/j.jhazmat.2006.01.077.CrossRefGoogle Scholar
  12. Marsal, A. (1999). Oxidizing unhairing process with hair recovery. Part I. Experiments on the prior hair immunization. Journal of Society of Leather Technology and Chemistry, 83, 310–315.Google Scholar
  13. Nriagu, J. O., & Pacyna, J. M. (1988). Quantitative assessment of world wide contamination of air, water and soils by trace metals. Nature, 333, 134–139. doi: 10.1038/333134a0.CrossRefGoogle Scholar
  14. Parikh, J. K., Sharma V. K., Gosh U., & Panda M. K. (1995). Trade and environment linkages: A case study of India, Indira Gandhi Institute of Development, Research report prepared by UNCTAD.Google Scholar
  15. Petruzzelli, D., Passino, R., & Tiravanti, G. (1995). Ion exchange process for chromium removal and recovery from tannery wastes. Industrial & Engineering Chemistry Research, 34, 2612–2617. doi: 10.1021/ie00047a009.CrossRefGoogle Scholar
  16. Radojevic, M., & Bashkin, V. N. (1999). Practical environmental analysis (pp. 131–134). Cambridge CB4 0WF, UK: The Royal Society of Chemistry.Google Scholar
  17. Raju, M., & Tandon, S. N. (1999). Operationally determined speciation of chromium in tannery sludges. Chemical Speciation and Bioavailability, 11, 67–70. doi: 10.3184/095422999782775717.CrossRefGoogle Scholar
  18. Raman, N., & Sambandan, K. (1998). Distribution of vam fungi in tannery effluent polluted soils of Tamil Nadu, India. Bulletin of Environmental Contamination and Toxicology, 60, 142–150. doi: 10.1007/s001289900602.CrossRefGoogle Scholar
  19. Ramasami, T. (1998). Emerging leather processing strategies for waste minimization. In J. Buljan, (Ed.), Background information and cleaner technologies in raw material preservation and in the Beamhouse processes. UNIDO, pp. 183–197.Google Scholar
  20. Ramasami, T. (1999). Beam house and tanning operations: Process chemistry revisited. Journal of Society of Leather Technology and Chemistry, 83, 39–45.Google Scholar
  21. Ramasami, T., & Prasad, B. G. S. (1991). Environmental aspects of leather processing. In S. Dasgupta, (Ed.), Proceedings of the 25th leather exposition, Indian leather technologists association. India, pp. 43–71.Google Scholar
  22. Rao, J. R., & Ramasami, T. (1997). Waste management in leather processing: A case of chromium. (a paper presented at International conference on Industrial Pollution and control technologies, Hyderabad).Google Scholar
  23. Reimann, C., & De-Caritat, P. (2000). Intrinsic flaws of element enrichment factors (EFs) in environmental geochemistry. Environmental Science & Technology, 34, 5084–5091. doi: 10.1021/es001339o.CrossRefGoogle Scholar
  24. Sastry, C. A., & Prasad, B. C. S. (1980). Treatment and disposal of tannery wastes. in: Leather trade year book. Science and Technology, Special supplement. India, pp. 75–86.Google Scholar
  25. StatSoft, Inc. (1999). STATISTICA for Windows. Computer Program Manual, Tulsa, OK.Google Scholar
  26. Tariq, S. R., Shah, M. H., Shaheen, N., Khalique, A., Manzoor, S., & Jaffar, M. (2005). Multivariate analysis of selected metals in tannery effluents and related soil. Journal of Hazardous Materials, 122, 17–22. doi: 10.1016/j.jhazmat.2005.03.017.CrossRefGoogle Scholar
  27. Tariq, S. R., Shah, M. H., Shaheen, N., Khalique, A., Manzoor, S., & Jaffar, M. (2006). Multivariate analysis of trace metal levels in tannery effluents in relation to soil and water—a case study from Peshawar, Pakistan. Journal of Environmental Management, 79, 20–29. doi: 10.1016/j.jenvman.2005.05.009.CrossRefGoogle Scholar
  28. Thuy, H. T. T., Tobschall, H. J., & An, P. V. (2000). Distribution of heavy metals in urban soils—a case study of Danang-Hoian Area (Vietnam). Environmental Geology, 39, 603–610. doi: 10.1007/s002540050472.CrossRefGoogle Scholar
  29. USEPA. (2000). Ground water quality standards. Fed. Regist. Superintendent Docum. 65, 1950.Google Scholar
  30. WHO. (2004). Guidelines for drinking water quality. Geneva: World Health Organization.Google Scholar
  31. Yu, K. C., Tsai, L. J., Chen, S. H., & Ho, S. T. (2001). Correlation analyses on binding behavior of heavy metals with sediment matrices. Water Research, 35, 2417–2428.Google Scholar
  32. Yu, P. -L., Tung, P. -T., & Tsun, K. -C. (2002). Multivariate analysis of soil heavy metal pollution and landscape pattern in Chaughua County in Taiwan. Landscape and Urban Planning, 62, 19–35. doi: 10.1016/S0169-2046(02)00094-4.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Saadia R. Tariq
    • 1
  • N. Shaheen
    • 1
  • A. Khalique
    • 1
  • Munir H. Shah
    • 1
    Email author
  1. 1.Department of ChemistryQuaid-i-Azam UniversityIslamabadPakistan

Personalised recommendations