Advertisement

Environmental Monitoring and Assessment

, Volume 165, Issue 1–4, pp 577–583 | Cite as

Photochemical pollution indicators—an analysis of 12 European monitoring stations

  • E. Kovač-Andrić
  • G. Šorgo
  • N. Kezele
  • T. CvitašEmail author
  • L. Klasinc
Article

Abstract

Indicators were devised to classify air pollution monitoring sites according to the type of expected photochemical pollution. The indicators are based on measured ozone volume fractions, the most frequently monitored component of photochemical pollution, and in particular on two contributions: one due to the ratio of daily maximum-to-minimum ozone volume fractions and the other to observed peak values. The two contributions regarded as independent are logically connected by “and” and therefore mathematically combined by multiplication. The criterion of classification is mainly described by the mentioned ratio and incidences of ozone volume fractions exceeding the limit of 80 ppb. Twelve monitoring stations within the European network (Cooperative programme for monitoring and evaluation of long-range transmission of air pollutants in Europe, EMEP) were classified according to this indicator predicting what ozone levels can be expected at the particular sites during the growth season (April through September) into three groups: clean, medium, and polluted, based on the data for the 7 years (1997 to 2003).

Keywords

Tropospheric ozone Photochemical pollution Air pollution indicator Monitoring EMEP 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Butković, V., Cvitaš, T., & Klasinc, L. (1990). Photochemical ozone in the Mediterranean. The Science of the Total Environment, 99, 145–151. doi: 10.1016/0048-9697(90)90219-K.CrossRefGoogle Scholar
  2. Chen, T.-M., Gokhale, J., Shofer, S., & Kuschner, W. G. (2007). Outdoor air pollution: Ozone health effects. The American Journal of the Medical Sciences, 333(4), 244–248. doi: 10.1097/MAJ.0b013e31803b8e8c.CrossRefGoogle Scholar
  3. Cvitaš, T., Kezele, N., Klasinc, L., & Lisac, I. (1995). Ozone measurements in Croatia. Pure and Applied Chemistry, 67, 1450–1453.Google Scholar
  4. Fischer, P. H., Brunekreef, B., & Lebret, E. (2004). Air pollution related deaths during the 2003 heat weave in the Netherlands. Atmospheric Environment, 38, 1083–1085. doi: 10.1016/j.atmosenv.2003.11.010.CrossRefGoogle Scholar
  5. Jeftić, J., & Cvitaš, T. (1991). Analysis of ozone monitoring data. Journal of Mathematical Chemistry, 8, 283–289. doi: 10.1007/BF01166943.CrossRefGoogle Scholar
  6. Ko, F. W. S., Tam, W., Wong, T. W., Lai, C. K. W., Wong, G. W. K., Leung, T.-F., et al. (2007). Effects of air pollution on asthma hospitalization rates in different age groups in Hong Kong. Clinical and Experimental Allergy, 37, 1312–1319. doi: 10.1111/j.1365-2222.2007.02791.x.CrossRefGoogle Scholar
  7. Maitre, A., Bonneterre, V., Huillard, L., Sabatier, P., & de Gaudemaris, R. (2006). Impact of urban atmospheric pollution on coronary disease. European Heart Journal, 27, 2275–2284. doi: 10.1093/eurheartj/ehl162.CrossRefGoogle Scholar
  8. McNaught, A. D., & Wilkinson, A. (1997). Compendium of chemical terminology. Oxford: Blackwell Science.Google Scholar
  9. Musselman, R. C., & Massman, W. J. (1999). Ozone flux to vegetation and its relationship to plant response and ambient air quality standards. Atmospheric Environment, 33, 65–73. doi: 10.1016/S1352-2310(98)00127-7.CrossRefGoogle Scholar
  10. Ruidavets, J.-B., Cournot, M., Cassadou, S., Giroux, M., Meybeck, M., & Ferrières, J. (2005). Ozone air pollution is associated with acute myocardial infarction. Cicrulation, 111, 563–569. doi: 10.1161/01.CIR.0000154546.32135.6E.CrossRefGoogle Scholar
  11. Sarnet, J. A., & Holguin, F. (2007). Asthma and air quality. Current Opinion in Pulmonary Medicine, 13, 63–66.CrossRefGoogle Scholar
  12. Stedman, J. R. (2004). The predicted number of air pollution related deaths in the UK during the August 2003 heatwave. Atmospheric Environment, 38, 1087–1090.CrossRefGoogle Scholar
  13. Wayne, R. P. (2000). Chemistry of the atmospheres (3rd ed., pp. 422–439). Oxford: Oxford University Press.Google Scholar
  14. West, J. J., Szopa, S., & Hauglustaine, D. A. (2007). Human mortality effects of future concentrations of tropospheric ozone. Comptes Rendus Geoscience, 339, 775–783. doi: 10.1016/j.crte.2007.08.005.CrossRefGoogle Scholar
  15. Zanobetti, A., & Schwartz, J. (2008). Mortality displacement in the association of ozone and mortality: An analysis of 48 cities in the United States. American Journal of Respiratory and Critical Care, 177, 184–189. doi: 10.1164/rccm.200706-823OC.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • E. Kovač-Andrić
    • 1
  • G. Šorgo
    • 2
  • N. Kezele
    • 2
  • T. Cvitaš
    • 2
    • 3
    Email author
  • L. Klasinc
    • 2
  1. 1.Department of ChemistryJ. J. Strossmayer University of OsijekOsijekCroatia
  2. 2.Ruđer Bošković InstituteZagrebCroatia
  3. 3.Department of ChemistryUniversity of ZagrebZagrebCroatia

Personalised recommendations