Skip to main content
Log in

Evaluation of the impacts of mine drainage from a coal waste pile on the surrounding environment at Smolnica, southern Poland

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Mine drainage impacts from a coal waste pile at Smolnica, Poland have been monitored. Groundwater in an unconfined aquifer downgradient from the pile has near-neutral pH, but high concentrations of sulfate (up to 3,827 mg/l), chloride (up to 903 mg/l), and sodium (up to 2,606 mg/l). Concentrations of iron and manganese are elevated only locally, and concentrations of other metals are low. The behavior of sulfate seems to be conservative in the downgradient aquifer, and gypsum may only be precipitating locally. Concentrations of iron and manganese seem to be controlled by the precipitation of ferric oxide and hydroxides and rhodochrosite, respectively. Complete neutralization of mine drainage by carbonates is consistent with high concentrations of calcium (up to 470 mg/l) and magnesium (up to 563 mg/l) and also with high strontium concentrations of up to 3.08 mg/l, observed in groundwater downgradient from the pile. Hydraulic head profiles at two sites within the river bottom sediments indicate upward flow toward the river with large local differences in groundwater recharge. Water chemistry profiles in the river bottom sediments and geochemical modeling suggest conservative behavior of Na, Cl, and SO4 and precipitation of Fe and Mn at the groundwater/river water interface. Mine drainage enters the Bierawka River and causes increasing sulfate concentrations. In contrast, concentrations of sodium and chloride in the Bierawka River decrease downgradient from the pile because water in the river upgradient from the pile is already highly contaminated by these species from the discharge of mining waters. Concentrations of Fe and Mn in the river water are low, as a consequence of the precipitation of Fe and Mn oxide and hydroxides. Direct geochemical modeling was able to reproduce measured concentrations of conservative species (e.g., Na, Cl, and SO4), but errors for metals and Ba were relatively large. In addition, calculated PCO2 values in the river water are very high, suggesting that equilibrium with atmospheric PCO2 and PO2 has not been reached, and at least some reactions should be modeled as kinetic processes. High concentrations of Na, Cl, and SO4 contribute to the contamination of the Odra River, which is joined by the Bierawka River farther downgradient, thus limiting the use of river water for recreation and other purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banks, D. (2006). Assessment of the impact of the mine flooding process on groundwater quality; chemical and mineralogical analysis of rock samples recovered from Janina Mine. In Hydrogeological Modelling of Water Evolution, Final report of WaterNorm Project, European Union Grant No. MTKD-CT-2004-003163, 55 p.

  • Banks, D., Younger, P. L., Arnesen, R.-T., Iversen, E. R., & Banks, S. B. (1997). Mine-water chemistry: The good, the bad and the ugly. Environmental Geology, 32(2), 157–174. doi:10.1007/s002540050204.

    Article  Google Scholar 

  • Benner, S. G., Smart, E. W., & Moore, J. N. (1995). Metal behavior during surface–groundwater interaction, Silver Bow Creek, Montana. Environmental Science & Technology, 29, 1789–1795. doi:10.1021/es00007a015.

    Article  CAS  Google Scholar 

  • Blowes, D. W., Ptacek, C. J., Jambor, J. L., & Weisener, C. G. (2003). The geochemistry of acid mine drainage. In B. S. Lollar (Ed.), Environmental geochemistry (Vol. 9, pp. 149–204). Treatise on geochemistry. Amsterdam: Elsevier.

    Google Scholar 

  • Cey, E. E., Rudolph, D. L., Parkin, G. W., & Aravena, R. (1998). Quantifying groundwater discharge to a small perennial stream in southern Ontario, Canada. Journal of Hydrology (Amsterdam), 210, 21–37. doi:10.1016/S0022-1694(98)00172-3.

    Article  Google Scholar 

  • Chalupnik, S., Michalik, B., Wysocka, M., Skubacz, K., & Mielnikow, A. (2001). Contamination of settling ponds and rivers as a result of discharge of radium-bearing waters from Polish coal mines. Journal of Environmental Radioactivity, 54, 85–98. doi:10.1016/S0265-931X(00)00168-5.

    Article  CAS  Google Scholar 

  • Conant, B., Jr. (2004). Delineating and quantifying ground water discharge zones using streambed temperatures. Ground Water, 4(2), 243–257. doi:10.1111/j.1745-6584.2004.tb02671.x.

    Google Scholar 

  • Cravotta, C. A., III. (2008). Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA, Part 2: Geochemical controls on constituent concentrations. Applied Geochemistry, 23, 203–226. doi:10.1016/j.apgeochem.2007.10.003.

    Article  CAS  Google Scholar 

  • Freeze, R. A., & Cherry, J. A. (1979). Groundwater. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Gandy, C. J., Smith, J. W. N., & Jarvis, A. P. (2007). Attenuation of mine-derived pollutants in the hyporheic zone: A review. The Science of the Total Environment, 373, 435–446. doi:10.1016/j.scitotenv.2006.11.004.

    Article  CAS  Google Scholar 

  • Gieré, R., Sidenko, N. V., & Lazareva, E. V. (2003). The role of secondary minerals in controlling the migration of arsenic and metals from high-sulfide wastes (Berikul gold mine, Siberia). Applied Geochemistry, 18, 1347–1359. doi:10.1016/S0883-2927(03)00055-6.

    Article  CAS  Google Scholar 

  • Gzyl, G., & Banks, D. (2007). Verification of the “first flush” phenomenon in mine water from coal mines in the Upper Silesian Coal Basin, Poland. Journal of Contaminant Hydrology, 92, 66–86. doi:10.1016/j.jconhyd.2006.12.001.

    Article  CAS  Google Scholar 

  • Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). Paleontological statistics software package for education and data analysis. Paleontologia Electronica, 4(1), 9.

    Google Scholar 

  • Hossner, L. R., & Doolittle, J. J. (2003). Iron sulfidic oxidation as influenced by calcium carbonate application. Journal of Environmental Quality, 32, 773–780.

    Article  CAS  Google Scholar 

  • Kubica, J. (2007). Report about geological works performed in the frame of research Project MAGIC at the site of “Smolnica” pile in Trachy (GIG 2007), Katowice (in Polish).

  • Langmuir, D. (1997). Aqueous environmental geochemistry. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Lefebvre, R., Hockley, D., Smolensky, J., & Gelinas, P. (2001). Multiphase transfer processes in waste rock piles producing acid mine drainage 1: Conceptual model and system characterization. Journal of Contaminant Hydrology, 52, 137–164. doi:10.1016/S0169-7722(01)00156-5.

    Article  CAS  Google Scholar 

  • Linklater, C. M., Sinclair, D. J., & Brown, P. L. (2005). Coupled chemistry and transport modeling of sulphidic waste rock dumps at the Aitik mine site, Sweden. Applied Geochemistry, 20, 275–293. doi:10.1016/j.apgeochem.2004.08.003.

    Article  CAS  Google Scholar 

  • Ministry of Environment (2002). Water norm for surface waters. Warszawa, Poland: Ministry of Environment.

    Google Scholar 

  • Nicholson, R. V., Gillham, R. W., & Reardon, E. J. (1990). Pyrite oxidation in carbonate-buffered solution: 2. Rate control by oxide coatings. Geochimica et Cosmochimica Acta, 54, 395–402. doi:10.1016/0016-7037(90)90328-I.

    Article  CAS  Google Scholar 

  • Parkhurst, D. L., & Appelo, C. A. J. (1999). Users guide to PHREEQC (version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical modeling. U.S. Geological Survey Water-Resources Investigations Report 99–4259.

  • Ritchie, A. I. M. (1994). Rates of mechanisms that govern pollutant generation from pyritic wastes. In C. N. Alpers & D. W. Blowes (Eds.), ACS Symposium series. Washington DC: American Chemical Society.

    Google Scholar 

  • Salzsauer, K. A., Sidenko, N. V., & Sheriff, B. L. (2005). Arsenic mobility in alteration products of sulphides-rich, arsenopyrite-bearing mine wastes, Snow Lake, Manitoba, Canada. Applied Geochemistry, 20, 2303–2314. doi:10.1016/j.apgeochem.2005.06.007.

    Article  CAS  Google Scholar 

  • Sczepañska, J., & Twardowska, I. (1999). Distribution and environmental impact of coal-mining wastes in Upper Silesia, Poland. Environmental Geology, 38(2), 249–258. doi:10.1007/s002540050422.

  • Smuda, J., Dold, B., Friese, K., Morgenstern, P., & Glaesser, W. (2007). Mineralogical and geochemical study of element mobility at the sulfide-rich Excelsior waste rock dump from the polymetallic Zn-Pb-(Ag-Bi-Cu) deposit, Cerro de Pasco, Peru. Journal of Geochemical Exploration, 92, 97–110. doi:10.1016/j.gexplo.2006.08.001.

    Article  CAS  Google Scholar 

  • Sracek, O. (2007). Coal waste pile at Smolnica: determination of the impact on surrounding environment. Final report of WaterNorm project, European Commission Grant No. MTKD-CT-2004–003163, 47 p.

  • Sracek, O. (2008). Investigation of the interaction of mine drainage from Smolnica coal waste pile with river bottom sediments and surface water in the Bierawka River. Extended report of WaterNorm project, European Union Grant No. MTKD-CT-2004-003163, 20 p.

  • Sracek, O., Choquette, M., Gélinas, P., Lefebvre, R., & Nicholson, R. V. (2004). Geochemical characterization of acid mine drainage from a waste rock pile, Mine Doyon, Québec, Canada. Journal of Contaminant Hydrology, 69, 45–71. doi:10.1016/S0169-7722(03)00150-5.

    Article  CAS  Google Scholar 

  • Stockwell, J., Smith, L., Jambor, J. L., & Beckie, R. (2006). The relationship between fluid flow and mineral weathering in heterogeneous unsaturated porous media: A physical and geochemical characterization of a waste-rock pile. Applied Geochemistry, 21(8), 1347–1361. doi:10.1016/j.apgeochem.2006.03.015.

    Article  CAS  Google Scholar 

  • Stromberg, B., & Banwart, S. (1999). Weathering kinetics of waste rock from the Aitik copper mine, Sweden: scale dependent rate factors and pH controls in large column experiments. Journal of Contaminant Hydrology, 39(1–2), 59–89. doi:10.1016/S0169-7722(99)00031-5.

    Article  CAS  Google Scholar 

  • Stumm, W., & Morgan, J. J. (1996). Aquatic chemistry (3rd ed.). New York: Wiley.

    Google Scholar 

  • Triska, F. J., Kennedy, V. C., Avanzino, R. J., Zelwegger, G. W., & Bencala, K. E. (1989). Retention and transport of nutrients in a third-order stream in northwest California: hyporheic processes. Ecology, 70, 1893–1905. doi:10.2307/1938120.

    Article  Google Scholar 

  • Twardowska, I., Sczepańska, J. (1995). Waste pile of Carboniferous rocks as long term source of ground water contamination: monitoring. Wspóşzesne problemy hydrogeologii t. VII: 475–483, Krakow-Krynica (In Polish).

  • Younger, P. L., Banwart, S. A., & Hedin, R. S. (2002). Mine water; hydrology, pollution, remediation. Dordrecht: Kluwer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondra Sracek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sracek, O., Gzyl, G., Frolik, A. et al. Evaluation of the impacts of mine drainage from a coal waste pile on the surrounding environment at Smolnica, southern Poland. Environ Monit Assess 165, 233–254 (2010). https://doi.org/10.1007/s10661-009-0941-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-0941-6

Keywords

Navigation