Advertisement

Environmental Monitoring and Assessment

, Volume 165, Issue 1–4, pp 233–254 | Cite as

Evaluation of the impacts of mine drainage from a coal waste pile on the surrounding environment at Smolnica, southern Poland

  • Ondra SracekEmail author
  • Grzegorz Gzyl
  • Adam Frolik
  • Janusz Kubica
  • Zbigniew Bzowski
  • Michal Gwoździewicz
  • Karol Kura
Article

Abstract

Mine drainage impacts from a coal waste pile at Smolnica, Poland have been monitored. Groundwater in an unconfined aquifer downgradient from the pile has near-neutral pH, but high concentrations of sulfate (up to 3,827 mg/l), chloride (up to 903 mg/l), and sodium (up to 2,606 mg/l). Concentrations of iron and manganese are elevated only locally, and concentrations of other metals are low. The behavior of sulfate seems to be conservative in the downgradient aquifer, and gypsum may only be precipitating locally. Concentrations of iron and manganese seem to be controlled by the precipitation of ferric oxide and hydroxides and rhodochrosite, respectively. Complete neutralization of mine drainage by carbonates is consistent with high concentrations of calcium (up to 470 mg/l) and magnesium (up to 563 mg/l) and also with high strontium concentrations of up to 3.08 mg/l, observed in groundwater downgradient from the pile. Hydraulic head profiles at two sites within the river bottom sediments indicate upward flow toward the river with large local differences in groundwater recharge. Water chemistry profiles in the river bottom sediments and geochemical modeling suggest conservative behavior of Na, Cl, and SO4 and precipitation of Fe and Mn at the groundwater/river water interface. Mine drainage enters the Bierawka River and causes increasing sulfate concentrations. In contrast, concentrations of sodium and chloride in the Bierawka River decrease downgradient from the pile because water in the river upgradient from the pile is already highly contaminated by these species from the discharge of mining waters. Concentrations of Fe and Mn in the river water are low, as a consequence of the precipitation of Fe and Mn oxide and hydroxides. Direct geochemical modeling was able to reproduce measured concentrations of conservative species (e.g., Na, Cl, and SO4), but errors for metals and Ba were relatively large. In addition, calculated PCO2 values in the river water are very high, suggesting that equilibrium with atmospheric PCO2 and PO2 has not been reached, and at least some reactions should be modeled as kinetic processes. High concentrations of Na, Cl, and SO4 contribute to the contamination of the Odra River, which is joined by the Bierawka River farther downgradient, thus limiting the use of river water for recreation and other purposes.

Keywords

Coal waste pile Mine drainage River sediments River contamination Equilibration with atmosphere 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banks, D. (2006). Assessment of the impact of the mine flooding process on groundwater quality; chemical and mineralogical analysis of rock samples recovered from Janina Mine. In Hydrogeological Modelling of Water Evolution, Final report of WaterNorm Project, European Union Grant No. MTKD-CT-2004-003163, 55 p.Google Scholar
  2. Banks, D., Younger, P. L., Arnesen, R.-T., Iversen, E. R., & Banks, S. B. (1997). Mine-water chemistry: The good, the bad and the ugly. Environmental Geology, 32(2), 157–174. doi: 10.1007/s002540050204.CrossRefGoogle Scholar
  3. Benner, S. G., Smart, E. W., & Moore, J. N. (1995). Metal behavior during surface–groundwater interaction, Silver Bow Creek, Montana. Environmental Science & Technology, 29, 1789–1795. doi: 10.1021/es00007a015.CrossRefGoogle Scholar
  4. Blowes, D. W., Ptacek, C. J., Jambor, J. L., & Weisener, C. G. (2003). The geochemistry of acid mine drainage. In B. S. Lollar (Ed.), Environmental geochemistry (Vol. 9, pp. 149–204). Treatise on geochemistry. Amsterdam: Elsevier.Google Scholar
  5. Cey, E. E., Rudolph, D. L., Parkin, G. W., & Aravena, R. (1998). Quantifying groundwater discharge to a small perennial stream in southern Ontario, Canada. Journal of Hydrology (Amsterdam), 210, 21–37. doi: 10.1016/S0022-1694(98)00172-3.CrossRefGoogle Scholar
  6. Chalupnik, S., Michalik, B., Wysocka, M., Skubacz, K., & Mielnikow, A. (2001). Contamination of settling ponds and rivers as a result of discharge of radium-bearing waters from Polish coal mines. Journal of Environmental Radioactivity, 54, 85–98. doi: 10.1016/S0265-931X(00)00168-5.CrossRefGoogle Scholar
  7. Conant, B., Jr. (2004). Delineating and quantifying ground water discharge zones using streambed temperatures. Ground Water, 4(2), 243–257. doi: 10.1111/j.1745-6584.2004.tb02671.x.Google Scholar
  8. Cravotta, C. A., III. (2008). Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA, Part 2: Geochemical controls on constituent concentrations. Applied Geochemistry, 23, 203–226. doi: 10.1016/j.apgeochem.2007.10.003.CrossRefGoogle Scholar
  9. Freeze, R. A., & Cherry, J. A. (1979). Groundwater. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
  10. Gandy, C. J., Smith, J. W. N., & Jarvis, A. P. (2007). Attenuation of mine-derived pollutants in the hyporheic zone: A review. The Science of the Total Environment, 373, 435–446. doi: 10.1016/j.scitotenv.2006.11.004.CrossRefGoogle Scholar
  11. Gieré, R., Sidenko, N. V., & Lazareva, E. V. (2003). The role of secondary minerals in controlling the migration of arsenic and metals from high-sulfide wastes (Berikul gold mine, Siberia). Applied Geochemistry, 18, 1347–1359. doi: 10.1016/S0883-2927(03)00055-6.CrossRefGoogle Scholar
  12. Gzyl, G., & Banks, D. (2007). Verification of the “first flush” phenomenon in mine water from coal mines in the Upper Silesian Coal Basin, Poland. Journal of Contaminant Hydrology, 92, 66–86. doi: 10.1016/j.jconhyd.2006.12.001.CrossRefGoogle Scholar
  13. Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). Paleontological statistics software package for education and data analysis. Paleontologia Electronica, 4(1), 9.Google Scholar
  14. Hossner, L. R., & Doolittle, J. J. (2003). Iron sulfidic oxidation as influenced by calcium carbonate application. Journal of Environmental Quality, 32, 773–780.CrossRefGoogle Scholar
  15. Kubica, J. (2007). Report about geological works performed in the frame of research Project MAGIC at the site of “Smolnica” pile in Trachy (GIG 2007), Katowice (in Polish).Google Scholar
  16. Langmuir, D. (1997). Aqueous environmental geochemistry. Upper Saddle River, NJ: Prentice Hall.Google Scholar
  17. Lefebvre, R., Hockley, D., Smolensky, J., & Gelinas, P. (2001). Multiphase transfer processes in waste rock piles producing acid mine drainage 1: Conceptual model and system characterization. Journal of Contaminant Hydrology, 52, 137–164. doi: 10.1016/S0169-7722(01)00156-5.CrossRefGoogle Scholar
  18. Linklater, C. M., Sinclair, D. J., & Brown, P. L. (2005). Coupled chemistry and transport modeling of sulphidic waste rock dumps at the Aitik mine site, Sweden. Applied Geochemistry, 20, 275–293. doi: 10.1016/j.apgeochem.2004.08.003.CrossRefGoogle Scholar
  19. Ministry of Environment (2002). Water norm for surface waters. Warszawa, Poland: Ministry of Environment.Google Scholar
  20. Nicholson, R. V., Gillham, R. W., & Reardon, E. J. (1990). Pyrite oxidation in carbonate-buffered solution: 2. Rate control by oxide coatings. Geochimica et Cosmochimica Acta, 54, 395–402. doi: 10.1016/0016-7037(90)90328-I.CrossRefGoogle Scholar
  21. Parkhurst, D. L., & Appelo, C. A. J. (1999). Users guide to PHREEQC (version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical modeling. U.S. Geological Survey Water-Resources Investigations Report 99–4259.Google Scholar
  22. Ritchie, A. I. M. (1994). Rates of mechanisms that govern pollutant generation from pyritic wastes. In C. N. Alpers & D. W. Blowes (Eds.), ACS Symposium series. Washington DC: American Chemical Society.Google Scholar
  23. Salzsauer, K. A., Sidenko, N. V., & Sheriff, B. L. (2005). Arsenic mobility in alteration products of sulphides-rich, arsenopyrite-bearing mine wastes, Snow Lake, Manitoba, Canada. Applied Geochemistry, 20, 2303–2314. doi: 10.1016/j.apgeochem.2005.06.007.CrossRefGoogle Scholar
  24. Sczepañska, J., & Twardowska, I. (1999). Distribution and environmental impact of coal-mining wastes in Upper Silesia, Poland. Environmental Geology, 38(2), 249–258. doi: 10.1007/s002540050422.
  25. Smuda, J., Dold, B., Friese, K., Morgenstern, P., & Glaesser, W. (2007). Mineralogical and geochemical study of element mobility at the sulfide-rich Excelsior waste rock dump from the polymetallic Zn-Pb-(Ag-Bi-Cu) deposit, Cerro de Pasco, Peru. Journal of Geochemical Exploration, 92, 97–110. doi: 10.1016/j.gexplo.2006.08.001.CrossRefGoogle Scholar
  26. Sracek, O. (2007). Coal waste pile at Smolnica: determination of the impact on surrounding environment. Final report of WaterNorm project, European Commission Grant No. MTKD-CT-2004–003163, 47 p.Google Scholar
  27. Sracek, O. (2008). Investigation of the interaction of mine drainage from Smolnica coal waste pile with river bottom sediments and surface water in the Bierawka River. Extended report of WaterNorm project, European Union Grant No. MTKD-CT-2004-003163, 20 p.Google Scholar
  28. Sracek, O., Choquette, M., Gélinas, P., Lefebvre, R., & Nicholson, R. V. (2004). Geochemical characterization of acid mine drainage from a waste rock pile, Mine Doyon, Québec, Canada. Journal of Contaminant Hydrology, 69, 45–71. doi: 10.1016/S0169-7722(03)00150-5.CrossRefGoogle Scholar
  29. Stockwell, J., Smith, L., Jambor, J. L., & Beckie, R. (2006). The relationship between fluid flow and mineral weathering in heterogeneous unsaturated porous media: A physical and geochemical characterization of a waste-rock pile. Applied Geochemistry, 21(8), 1347–1361. doi: 10.1016/j.apgeochem.2006.03.015.CrossRefGoogle Scholar
  30. Stromberg, B., & Banwart, S. (1999). Weathering kinetics of waste rock from the Aitik copper mine, Sweden: scale dependent rate factors and pH controls in large column experiments. Journal of Contaminant Hydrology, 39(1–2), 59–89. doi: 10.1016/S0169-7722(99)00031-5.CrossRefGoogle Scholar
  31. Stumm, W., & Morgan, J. J. (1996). Aquatic chemistry (3rd ed.). New York: Wiley.Google Scholar
  32. Triska, F. J., Kennedy, V. C., Avanzino, R. J., Zelwegger, G. W., & Bencala, K. E. (1989). Retention and transport of nutrients in a third-order stream in northwest California: hyporheic processes. Ecology, 70, 1893–1905. doi: 10.2307/1938120.CrossRefGoogle Scholar
  33. Twardowska, I., Sczepańska, J. (1995). Waste pile of Carboniferous rocks as long term source of ground water contamination: monitoring. Wspóşzesne problemy hydrogeologii t. VII: 475–483, Krakow-Krynica (In Polish).Google Scholar
  34. Younger, P. L., Banwart, S. A., & Hedin, R. S. (2002). Mine water; hydrology, pollution, remediation. Dordrecht: Kluwer.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Ondra Sracek
    • 1
    • 2
    Email author
  • Grzegorz Gzyl
    • 3
  • Adam Frolik
    • 3
  • Janusz Kubica
    • 3
  • Zbigniew Bzowski
    • 3
  • Michal Gwoździewicz
    • 3
  • Karol Kura
    • 3
  1. 1.OPV s.r.o. (Protection of Groundwater Ltd)PragueCzech Republic
  2. 2.Institute of Geological Sciences, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  3. 3.Central Mining Institute (GIG)KatowicePoland

Personalised recommendations