Changes of the bacterial assemblages throughout an urban drinking water distribution system

  • Konstantinos Ar. KormasEmail author
  • Christos Neofitou
  • Maria Pachiadaki
  • Eulalia Koufostathi


We analyzed the bacterial 16S rRNA gene diversity throughout the major components of the drinking water distribution system of a ca. 52,000-inhabitants city (Trikala City, Greece) in order to describe the changes of the bacterial assemblages and to detect possible bacterial pathogens which are not included in the standard monitoring process. Bacterial DAPI counts and DNA extraction was performed in the water pumping wells, the water treatment tank and tap water from households. Approximately 920 bp of the bacterial 16S rDNA were PCR-amplified, cloned, and sequenced for a total of 191 clones, which belonged to 112 unique phylotypes. The water of the pumping wells harbored a typical subsurface bacterial assemblage, with no human pathogens, dominated by β-Proteobacteria. Cell abundance in the water treatment tank decreased significantly, close to detection limit, but bacterial diversity remained high. However, the dominance of β-Proteobacteria decreased considerably, indicating the sensitivity of this group to drinking water disinfection treatment. Tap water from the households hosted a much less diverse, low-cell bacterial assemblage, dominated by Mycobacterium-like phylotypes, related to biofilm bacterial communities.


Bacteria 16S rRNA Diversity Drinking water 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10661_2009_924_MOESM1_ESM.doc (302 kb)
(DOC 301 kb)


  1. Aronson, T., Holtzman, A., Glover, N., Boian, M., Froman, S., Berlin, O. G. W., et al. (1999). Comparison of large restriction fragments of Mycobacterium avium isolates recovered from AIDS and non-AIDS patients with those of isolates from potable water. Journal of Clinical Microbiology, 37, 1008–1012.Google Scholar
  2. Aller, J. Y., & Kemp, P. F. (2008). Are Archaea inherently less diverse than bacteria in the same environments? FEMS Microbiology Ecology, 65, 74–87. doi: 10.1111/j.1574-6941.2008.00498.x.CrossRefGoogle Scholar
  3. Berry, D., Xi, C., & Raskin, L. (2006). Microbial ecology of drinking water distribution systems. Current Opinion in Microbiology, 17, 297–302.Google Scholar
  4. Böttger, E. C. (1991). Diagnosis and identification of Mycobacteria with PCR. Laboratory Medicine, 15, 414–419.Google Scholar
  5. Call, D. (2005). Challenges and opportunities for pathogen detection using DNA microarrays. Critical Reviews in Microbiology, 31, 91–99. doi: 10.1080/10408410590921736.CrossRefGoogle Scholar
  6. Colwell, R. R., Brayton, P. B., Grimes, D. J., Roszak, D. B., Huq, S. A., & Palmer, L. M. (1985). Viable but non-culturable Vibrio cholerae and related pathogens in the environment: Implications for release of genetically engineered microorganisms. Nature Biotechnology, 3, 817–820. doi: 10.1038/nbt0985-817.CrossRefGoogle Scholar
  7. Covert, T. C., Rodgers, M. R., Reyes, A. L., & Stelma, G. N., Jr. (1999). Occurrence of nontuberculous mycobacteria in environmental samples. Applied and Environmental Microbiology, 65, 2492–2496.Google Scholar
  8. Emtiazi, F., Schwartz, T., Marten, S. M., Krolla-Sidenstein, P., & Obst, U. (2004). Investigation of natural biofilms formed during the production of drinking water from surface water embankment filtration. Water Research, 38, 1197–1206. doi: 10.1016/j.watres.2003.10.056.CrossRefGoogle Scholar
  9. Falkinham, J. O., III, Norton, C. D., & LeChevallier, M. W. (2001). Factors influencing numbers of Mycobacterium avium, Mycobacterium intracellulare, and other mycobacteria in drinking water distribution system. Applied and Environmental Microbiology, 67, 1225–1231. doi: 10.1128/AEM.67.3.1225–1231.2001.CrossRefGoogle Scholar
  10. Good, I. J. (1953). The population frequencies of species and the estimation of population parameters. Biometrika, 43, 45–63.Google Scholar
  11. Hilborn, E. D., Covert, T. C., Yakrus, M. A., Harris, S. I., Donnelly, S. F., Rice, E. W., et al. (2006). Persistence of nontuberculous mycobacteria in a drinking water system after addition of filtration treatment. Applied and Environmental Microbiology, 72, 5864–5869. doi: 10.1128/AEM.00759-06.CrossRefGoogle Scholar
  12. Hurst, C. J., Crawford, R. L., Knudsen, G. R., McInerney, M. J., & Stetzenbach, L. D. (2002). Manual of environmental microbiology (2nd ed.). Washington DC: American Society for Microbiology Press.Google Scholar
  13. Hussong, D., Colwell, R. R., O’Brien, M., Weiss, E., Pearson, A. D., Weiner, M., et al. (1987). Viable Legionella pneumophila not detectable by culture on agar media. Nature Biotechnology, 5, 947–950. doi: 10.1038/nbt0987-947.CrossRefGoogle Scholar
  14. Kemp, P. F., & Aller, J. Y. (2004). Estimating prokaryotic diversity: When 16S rDNA libraries are large enough? Limnology and Oceanography, Methods, 2, 114–125.Google Scholar
  15. Koneman, E. W., Allen, S. D., Janda, W. M., Schreckenberger, P. C., & Win, W. C. (2004). Color atlas and textbook of diagnostic microbiology (5th ed.). New York (NY): Lippincott.Google Scholar
  16. Lane, D. J. (1991). Nucleic acids techniques in bacterial systematics. New York (NY): Willey-Interscience.Google Scholar
  17. LeChevallier, M. W., Welch, N. J., & Smith, D. B. (1996). Full-scale studies of factors related to coliform regrowth in drinking water. Applied and Environmental Microbiology, 62, 2201–2211.Google Scholar
  18. Le Dantec, C., Duguet, J.-P., Montiel, A., Dumoutier, N., Dubrou, S., & Vincent, V. (2002). Chlorine disinfection of atypical mycobacteria isolated from a water distribution system. Applied and Environmental Microbiology, 68, 1025–1032. doi: 10.1128/AEM.68.3.1025-1032.2002.CrossRefGoogle Scholar
  19. Lipponen, M. T. T., Martikainen, P. J., Vasara, R. E., Servomaa, K., Zacheus, O., & Kontro, M. H. (2004). Occurrence of nitrifiers and diversity of ammonia-oxidizing bacteria in developing drinking water biofilms. Water Research, 38, 4424–4434. doi: 10.1016/j.watres.2004.08.021.CrossRefGoogle Scholar
  20. Loy, A., Beisker, W., & Meier, H. (2005). Diversity of Bacteria in natural mineral water after bottling. Applied and Environmental Microbiology, 71, 3624–3632. doi: 10.1128/AEM.71.7.3624-3632.2005.CrossRefGoogle Scholar
  21. Lu, H.-Z., Weng, X.-H., Zhu, B., Li, H., Yin, Y.-K., Zhang, Y.-Z., et al. (2003). Major outbreak of toxic shock-like syndrome caused by Streptococcus mitis. Journal of Clinical Microbiology, 41, 3051–3055. doi: 10.1128/JCM.41.7.3051-3055.2003.CrossRefGoogle Scholar
  22. Maidak, B. L., Cole, J. R., Lilburn, T. G., Parker, C. T., Jr., Saxman, P. R., Farris, R. J., et al. (2001). The RDP-II (Ribosomal Database Project). Nucleic Acids Research, 29, 173–174. doi: 10.1093/nar/29.1.173.CrossRefGoogle Scholar
  23. Martiny, A. C., Albrechtsen, H.-J., Arvin, E., & Molin, S. (2005). Identification of bacteria in biofilm and bulk water samples from a nonchlorinated model drinking water distribution system: Detection of a large nitrite-oxidizing population associated with Nitrospira spp. Applied & Environmental Microbiology, 71, 8611–8617. doi: 10.1128/AEM.71.12.8611-8617.2005.CrossRefGoogle Scholar
  24. Pace, N. R. (1997). A molecular view of microbial diversity and the biosphere. Science, 276, 734–740. doi: 10.1126/science.276.5313.734.CrossRefGoogle Scholar
  25. Peters, M., Müller, C. S., Rüsch-Gerdes, S., Seidel, C., Göbel, U., Pohle, H. D., et al. (1995). Isolation of atypical mycobacteria from tap water in hospitals and homes: Is this a possible source of disseminated MAC infection in AIDS patients? The Journal of Infection, 31, 39–44. doi: 10.1016/S0163-4453(95)91333-5.CrossRefGoogle Scholar
  26. Porter, K. G., & Feig, Y. S. (1980). The use of DAPI for identifying and counting aquatic microflora. Limnology and Oceanography, 25, 943–948.CrossRefGoogle Scholar
  27. Regan, J. M., Harrington, G. W., Baribeau, H., Leon, R. D., & Noguera, D. R. (2003). Diversity of nitrifying bacteria in full-scale chloraminated distribution systems. Water Research, 37, 197–205. doi: 10.1016/S0043-1354(02)00237-3.CrossRefGoogle Scholar
  28. Sen, K., & Rodgers, M. (2004). Distribution of six virulence factors in Aeromonas species isolated from US drinking water utilities: A PCR identification. Journal of Applied Microbiology, 97, 1077–1086. doi: 10.1111/j.1365-2672.2004.02398.x.CrossRefGoogle Scholar
  29. Spiegelman, D., Whissell, G., & Greer, C. W. (2005). A survey of the methods for the characterization of microbial consortia and communities. Canadian Journal of Microbiology, 51, 355–386. doi: 10.1139/w05-003.CrossRefGoogle Scholar
  30. Stackebrandt, E. (2006). Molecular identification, systematics, and population structure of prokaryotes. Berlin: Springer.Google Scholar
  31. Staley, J. T., & Reysenbach, A.-L. (2002). Biodiversity of microbial life. Foundation of earth’s biosphere. New York (NY): Wiley-Liss.Google Scholar
  32. Steed, K. A., & Falkinham, J. O., III. (2006). Effect of growth in biofilms on chlorine susceptibility of Mycobacterium avium and Mycobacterium intracellulare. Applied and Environmental Microbiology, 72, 4007–4011. doi: 10.1128/AEM.02573-05.CrossRefGoogle Scholar
  33. Szewzyk, U., Szewzyk, R., Manz, W., & Schleifer, K. H. (2000). Microbiological safety of drinking water. Annual Review of Microbiology, 54, 81–127. doi: 10.1146/annurev.micro.54.1.81.CrossRefGoogle Scholar
  34. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Molecular Biology and Evolution, 24, 1596–1599. doi: 10.1093/molbev/msm092.CrossRefGoogle Scholar
  35. Tokajian, S. T. H., Fuad, A., Hancock, I. C., & Zalloua, P. A. (2005). Phylogenetic assessment of heterotrophic bacteria from a water distribution system using 16S rDNA sequencing. Canadian Journal of Microbiology, 51, 325–335. doi: 10.1139/w05-007.CrossRefGoogle Scholar
  36. Torvinen, E., Suomalainen, S., Lehtola, M. J., Miettinen, I. T., Zacheus, O., Paulin, L., et al. (2004). Mycobacteria in water and loose deposits of drinking water distribution systems in Finland. Applied and Environmental Microbiology, 70, 1973–1981. doi: 10.1128/AEM.70.4.1973–1981.2004.CrossRefGoogle Scholar
  37. Torvinen, E., Lehtola, M. J., Martikainen, P. J., & Miettinen, I. T. (2007). Survival of Mycobacterium avium in drinking water biofilms as affected by water flow velocity, availability of phosphorus, and temperature. Applied and Environmental Microbiology, 73, 6201–6207. doi: 10.1128/AEM.00828–07.CrossRefGoogle Scholar
  38. WHO (2004). Guidelines for drinking water quality (3rd ed.). Geneva: World Health Organization.Google Scholar
  39. WHO (2006). Guidelines for drinking water quality. Addendum to volume 1 (3rd ed.). Geneva: World Health Organization.Google Scholar
  40. Williams, M. M., Domingo, J. W., Meckes, M. C., Kelty, C. A., & Rochon, H. S. (2004). Phylogenetic diversity of drinking water bacteria in a distribution system simulator. Journal of Applied Microbiology, 96, 954–964. doi: 10.1111/j.1365-2672.2004.02229.x.CrossRefGoogle Scholar
  41. Yamazaki, Y., Danelishvili, L., Wu, M., MacNab, M., & Bermudez, L. E. (2006). Mycobacterium avium genes associated with the ability to form biofilm. Applied and Environmental Microbiology, 72, 819–825. doi: 10.1128/AEM.72.1.819-825.2006.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Konstantinos Ar. Kormas
    • 1
    Email author
  • Christos Neofitou
    • 1
  • Maria Pachiadaki
    • 1
  • Eulalia Koufostathi
    • 1
  1. 1.Department of Ichthyology & Aquatic Environment, School of Agricultural SciencesUniversity of ThessalyNea IoniaGreece

Personalised recommendations