Environmental Monitoring and Assessment

, Volume 164, Issue 1–4, pp 677–689

Assessment of heavy metal concentration in the Khoshk River water and sediment, Shiraz, Southwest Iran

Article

Abstract

Heavy metal contents and contamination characteristics of the water and sediment of the Khoshk River, Shiraz, Southwest Iran were investigated. The abundance of heavy metals decreases as Zn > Mn > Cr > Ni >Pb > Cu > Cd in water samples and Mn > Cr > Pb > Ni > Zn > Cu > Cd in sediments, respectively. Based on the enrichment factor and geoaccumulation index values, sediments were loaded with Cr, Zn, Pb, Cu, and Cd. Pearson correlation matrix as well as cluster and principal components analyses and analysis of variance were implemented on data from sampling sites. Based on the locations of sampling sites in clusters and variable concentrations at these stations, it was concluded that municipal, industrial, and domestic discharges in the Shiraz urban area strongly affected heavy metals concentrations in the Khoshk River water and sediment. Results obtained from principal components analysis of sediment samples showed that the high concentration of Ni was mainly from natural origin, related to the composition of parent rocks, while the elevated values of Cr, Zn, Pb, Cd, and Cu were due to anthropogenic activities.

Keywords

Heavy metal Khoshk River Anthropogenic activities Shiraz 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahim, G. M. S., & Parker, R. G. (2008). Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Aukland, New Zealand. Environmental Monitoring and Assessment, 136, 227–238. doi:10.1007/s10661-007-9678-2.CrossRefGoogle Scholar
  2. Adamako, D., Nyarko, B. J. B., Dampare, J. B., Serfor-Armah, Y., Osae, S., Fianko, J. B., et al. (2008). Determination of toxic elements in waters and sediments from Subin in the Ashanti Region of Ghana. Environmental Monitoring and Assessment, 141(1–3), 165–175. doi:10.1007/s10661-007-9885-x.CrossRefGoogle Scholar
  3. Barcel’o, D. (2004). Analysis of soil, sediment and sludge. Trends in Analytical Chemistry, 23(10–11), 677–679. doi:10.1016/j.trac.2004.09.002.CrossRefGoogle Scholar
  4. Bergamaschi, L., Rizzio, E., Valcuvia, M. G., Verza, G., Profumo, A., & Gallorini, M. (2002). Determination of trace elements and evaluation of their enrichment factors in Himalayan lichens. Environmental Pollution, 120(1), 137–144. doi:10.1016/S0269-7491(02)00138-0.CrossRefGoogle Scholar
  5. Birke, M., & Rauch, U. (2000). Urban geochemistry: Investigation in the Berlin metropolitan area. Environmental Geochemistry and Health, 22, 233–248. doi:10.1023/A:1026554308673.CrossRefGoogle Scholar
  6. Chen, Z., Saito, Y., Kanai, Y., Wei, T., Li, L., Yao, H., et al. (2004). Low concentration of heavy metals in the Yangtze estuarine sediments, China: A diluting setting. Estuarine, Coastal and Shelf Science, 60, 91–100. doi:10.1016/j.ecss.2003.11.021.CrossRefGoogle Scholar
  7. Cobelo-García, A., & Prego, R. (2003). Heavy metal sedimentary record in a Galician Ria (NW Spain): Background values and recent contamination. Marine Pollution Bulletin, 46, 1253–1262. doi:10.1016/S0025-326X(03)00168-1.CrossRefGoogle Scholar
  8. Datta, D. K., & Subramanian, V. (1998). Distribution and fractionation of heavy metals in the surface sediments of the Ganges–Brahmaputra–Meghna river system in the Bengal basin. Environmental Geology, 36, 93–101. doi:10.1007/s002540050324.CrossRefGoogle Scholar
  9. Erel, Y., Morgan, J. J., & Patterson, C. C. (1991). Naturals levels of lead and cadmium in a remote mountain stream. Geochimica et Cosmochimica Acta, 55, 707–719. doi:10.1016/0016-7037(91)90335-3.CrossRefGoogle Scholar
  10. Forstner, U., & Salomons, W. (1984). Metals in the hydrocycle. Berlin: Springer.Google Scholar
  11. Harami, M. R., Mahboudi, A., Reaisi, E., & Ahmadi, A. (2003). The study of the causes of grain size variations toward downstream and source of fine grain sediments in the Khoshk River drainage basin in Shiraz. In Proceeding of the 21st symposium on geosciences, geological survey of Iran (pp. 17–19). Tehran, Iran (in Farsi).Google Scholar
  12. Hernandez, L., Probst, A., Probst, J. L., & Ulrich, E. (2003). Heavy metal distribution in some French forest soils: Evidence for atmospheric contamination. The Science of the Total Environment, 312, 195–219. doi:10.1016/S0048-9697(03)00223-7.CrossRefGoogle Scholar
  13. Howarth, R. J., & Nombela, M. A. (2003). Metals in the sediments of Ensenada de San Simon (inner Ria de Vigo), Galicia, NW Spain. Applied Geochemistry, 18, 973–996. doi:10.1016/S0883-2927(02)00203-2.CrossRefGoogle Scholar
  14. Idris, A. M. (2008). Combining multivariate statistical analysis and geochemical approaches for the assessment of the level of heavy metals in sediments from Sudanese harbors along the Red Sea coast. Microchemical Journal, 90(2), 159–163. doi:10.1016/j.microc.2008.05.004.CrossRefGoogle Scholar
  15. Jain, C. K., Singhal, D. C., & Sharma, M. K. (2004). Adsorption of zinc on bed sediment of River Hindon: Absorption models and kinetics. Journal of Hazardous Materials, B114, 231–239. doi:10.1016/j.jhazmat.2004.09.001.CrossRefGoogle Scholar
  16. Jain, C. K., Singhal, D. C., & Sharma, M. K. (2005). Metal pollution assessment of sediment and water in the river Hindon, India. Environmental Monitoring and Assessment, 105, 193–207. doi:10.1007/s10661-005-3498-z.CrossRefGoogle Scholar
  17. Jones, B., & Turki, A. (1997). Distribution and speciation of heavy metals in surficial sediments from the tees estuary, north-east England. Marine Pollution Bulletin, 34, 768–790. doi:10.1016/S0025-326X(97)00047-7.CrossRefGoogle Scholar
  18. Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soil and plants. Boca Raton, FL: CRC.Google Scholar
  19. Korfali, S. I., & Davies, B. E. (2001). A comparison of metals in sediments and water in the river Nahr-Ibrahim, Lebanon. Environmental Geochemistry and Health, 25, 41–50. doi:10.1023/A:1021284126632.CrossRefGoogle Scholar
  20. Kucuksezgin, F., Uluturhan, E., & Batki, H. (2008). Distribution of heavy metals in water, particulate matter and sediments of Gediz River (Eastern Aegean). Environmental Monitoring and Assessment, 141, 213–225. doi:10.1007/s10661-007-9889-6.CrossRefGoogle Scholar
  21. Lopez-Sanchez, J. F., Rubio, R., Samitier, C., & Rauret, G. (1996). Trace metal partitioning in marine sediments and sludges deposited off the coast of Barcelona (Spain). Water Research, 30, 153–159. doi:10.1016/0043-1354(95)00129-9.CrossRefGoogle Scholar
  22. Loredo, J., Oronez, A., Charlesworth, S., & De Miguel, E. (2003). Influence of industry on the geochemical urban environment of Mieres (Spain) and associated health risk. Environmental Geochemistry and Health, 25, 307–323. doi:10.1023/A:1024521510658.CrossRefGoogle Scholar
  23. MacDonald, D. D., Ingersoll, C. G., & Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystem. Archives of Environmental Contamination and Toxicology, 39, 20–31. doi:10.1007/s002440010075.CrossRefGoogle Scholar
  24. McCready, S., Birch, G. F., & Long, E. R. (2006). Metallic and organic contaminants in sediments of Sydney Harbour, Australia and vicinity—a chemical dataset for evaluating sediment quality guidelines. Environment International, 32, 455–465. doi:10.1016/j.envint.2005.10.006.CrossRefGoogle Scholar
  25. Miguel, E. D., Charlesworth, S., Ordonez, A., & Seijas, E. (2005). Geochemical fingerprints and controls in the sediments of an urban river: River Manzanares, Madrid (Spain). The Science of The Total Environment, 340, 137–148. doi:10.1016/j.scitotenv.2004.07.031.CrossRefGoogle Scholar
  26. Mishra, V. K., Kim, K. H., Kang, C. H., & Choi, K. C. (2004). Wintertime sources and distribution of airborne lead in Korea. Atmospheric Environment, 38(17), 2653–2664. doi:10.1016/j.atmosenv.2004.02.025.CrossRefGoogle Scholar
  27. Morillo, J., Usero, J., & Gracia, I. (2002). Partitioning of metals in sediments from the Odiel River (Spain). Environment International, 28, 263–271. doi:10.1016/S0160-4120(02)00033-8.CrossRefGoogle Scholar
  28. Muller, G. (1979). Schwermetalle in den Sedimenten des Rheins Veranderungen seit 1971. Umschau, 79(24), 778–783.Google Scholar
  29. Pekey, H. (2006). The distribution and sources of heavy metals in Izmir Bay surface sediments affected by a polluted stream. Marine Pollution Bulletin, 52, 1197–1208. doi:10.1016/j.marpolbul.2006.02.012.CrossRefGoogle Scholar
  30. Pratt, P. F. (1972). Quality criteria for trace elements in irrigation waters. California Agricultural Experiment Station.Google Scholar
  31. Qishlaqi, A., Moore, F., & Forghani, G. (2008). Impact of untreated wastewater irrigation on soils and crops in Shiraz suburban area, SW Iran. Environmental Monitoring and Assessment, 141, 257–273. doi:10.1007/s10661-007-9893-x.CrossRefGoogle Scholar
  32. Shotyk, W., Blaser, P., Grunig, A., & Cheburnikin, A. K. (2000). A new approach for quantifying cumulative, anthropogenic, atmospheric lead deposition using peat cores from bogs: Pb in eight Swiss peat bog profiles. The Science of the Total Environment, 249, 281–295. doi:10.1016/S0048-9697(99)00523-9.CrossRefGoogle Scholar
  33. Tam, N. F. Y., & Wong, Y. S. (2000). Spatial variation of heavy metals in surface sediments of Hong Kong mangrove swamps. Environmental Pollution, 110, 195–205. doi:10.1016/S0269-7491(99)00310-3.CrossRefGoogle Scholar
  34. Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the earth’s crust. Bulletin of Geological Society of America, 72, 175–192. doi:10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2.CrossRefGoogle Scholar
  35. Wang, S., Cao, Z., Lan, D., Zheng, Z., & Li, G. (2007). Concentration distribution and assessment of several heavy metals in sediments of west-four Pearl River estuary. Environmental Geology, 55(5), 963–975. doi:10.1007/s00254-007-1046-6.CrossRefGoogle Scholar
  36. Yongming, H., Peixuan, D., Junji, C., & Posmentier, E. S. (2006). Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. The Science of the Total Environment, 355, 176–118. doi:10.1016/j.scitotenv.2005.02.026.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Earth Sciences, Faculty of SciencesShiraz UniversityShirazIran

Personalised recommendations