Environmental Monitoring and Assessment

, Volume 164, Issue 1–4, pp 649–676 | Cite as

Review of monitoring and assessing ground vegetation biodiversity in national forest inventories

  • I. AlberdiEmail author
  • S. Condés
  • J. Martínez-Millán


Ground vegetation (GV) is an important component from which many forest biodiversity indicators can be estimated. To formulate policies at European level, taking into account biodiversity, European National Forest Inventories (NFIs) are one of the most important sources of forest information. However, for monitoring GV, there are several definitions, data collection methods, and different possible indicators. Even though it must be considered that natural conditions in different countries form very different understory types, each one has its own cost-efficient monitoring design, and they can hardly be compared. Therefore, the development of general guidelines is a particularly complex issue. This paper is a review of data collection methods and consequently a selection of the best available methods for the set of indicators with an emphasis on GV sampling methodologies in NFIs. As a final result, recommendations on GV definitions and classifications, sampling methodologies, and indicators are formulated for NFIs. Different sampling areas are recommended for each life form (shrubs, herbs, etc.). Inventory cycles and sampling seasons (depending on the phonological stages) should be specially considered and evaluated in the results. The proposed indicators are based on composition at different levels of sampling intensity for each life form and on coverage measurements.


Ground vegetation Ground vegetation components Ground vegetation attributes Forest biodiversity National forest inventory Sampling methods Volume calculations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aguilo, M., Aramburu, M. P., Blanco, A., Calatayud, T., Carrasco, R., Castilla, G., et al. (1992). Guía para la elaboración de estudios del medio físico: Contenido y metodología (809 pp.). Madrid: Ministerio de Medio Ambiente.Google Scholar
  2. Barbati, A., Corona, P., & Marchetti, M. (2006). European forest types. Categories and types for sustainable forest management and reporting and policy. EEA Technical report No 9/2006.Google Scholar
  3. Barkman, J. J. (1989). A critical evaluation of minimum area concepts. Plant Ecology, 85, 89–104.CrossRefGoogle Scholar
  4. Bergstedt, J., & Milberg, P. (2001). The impact of logging intensity on field-layer vegetation in Swedish boreal forests. Forest Ecology and Management, 154, 105–115.CrossRefGoogle Scholar
  5. Bocher, T. W. (1933). Phytogeographical studies of the Greenland flora. Meddel on Groenland Bd., 104(3), 55.Google Scholar
  6. Bonham, C. D. (1989). Measurements for terrestrial vegetation (338 pp.). New York: Wiley.Google Scholar
  7. Brakenhielms, S., & Liu, Q. (1998). Long-term effects of clear-felling on vegetation dynamics and species diversity in a boreal pine forest. Biodiversity and Conservation, 7, 207–220.CrossRefGoogle Scholar
  8. Braun-Blanquet, J. (1932). Plant sociology: The study of plant communities (439 pp.). New York: McGraw Hill.Google Scholar
  9. Brunet, J., Falkengren-Grerup, U., & Tyler, G. (1996). Herb layer vegetation of south Swedish beech and oak forests – effects of management and soil acidity during one decade. Forest Ecology and Management, 88, 259–272.CrossRefGoogle Scholar
  10. Chytrý, M., & Otýpková, Z. (2003). Plot sizes used for phytosociological sampling of European vegetation. Journal of Vegetation Science, 14(4), 563–570.CrossRefGoogle Scholar
  11. COST E43 (2005). Available at
  12. Dan Aamlid and the col. Expert Panel (2002). Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. Part VIII. Assessment of ground Vegetation. Available at
  13. Danserau, P. (1957). Biogeography an ecological perspective (xiii + 394 pp.). New York: Ronald.Google Scholar
  14. Daubenmire, R. F. (1968). Plant communities: A text book of plant synecology (xiv + 300 pp.). New York: Harper and Row.Google Scholar
  15. Delbaere, B. (2003). An inventory of biodiversity indicators in Europe, 2002 (42 pp.). Technical Report No 92. Copenhagen: European Enviromen Agency.Google Scholar
  16. Dierschke, H. (1994). Pflanzensoziologie. Grundlagen und methoden (683 pp.). Stuttgart: Ulmer.Google Scholar
  17. Dulamsuren, C. h., Hauck, M., & Mühlenberg, M. (2005). Ground vegetation in the Mongolian taiga forest-steppe ecotone does not offer evidence for the human origin of grasslands. Applied Vegetation Science, 8(2), 149–154.CrossRefGoogle Scholar
  18. Ellenberg, H., & Mueller-Dombois, D. (1967a). A key to Raunkiaer plant life forms with revised subdivisions. Bericht über das Geobotanische Forschungsinstitut Rübel in Zürich, 37, 56–73.Google Scholar
  19. Ellenberg, H., & Mueller-Dombois, D. (1967b). Tentative physiognomic-ecological classification of plant formations of the Earth. Bericht über das Geobotanische Forschungsinstitut Rübel in Zürich, 37, 21–55.Google Scholar
  20. Evans, L. S., Harnett, J., Sr., & Kahn-Jetter, Z. (2006). Procedures to determine the amount of plant cover/basal area in field plots. Environmental and Experimental Botany, 58, 180–187.CrossRefGoogle Scholar
  21. Eyre, T. J., Kelly, A. L., & Nelder, V. J. (2006). Methodology for the establishment and survey of reference sites for BioCondition. Available at
  22. Ferris, R., & Humphrey, J. W. (1999). A review of potential biodiversity indicators for application in British forests. Forestry, 72(4), 313–328.CrossRefGoogle Scholar
  23. Food and Agriculture Organization of the United Nations (FAO) (2005). Global forest resources assessment update. Terms and definitions (Final version). Working paper 83. Rome 2004. Available at
  24. Ford, E. D., & Newbould, P. J. (1977). The biomass and production of ground vegetation and its relation to tree cover through a deciduous woodland cycle. Journal of Ecology, 65, 201–212.CrossRefGoogle Scholar
  25. Gleason, H. A. (1926). The individualistic concept of the plant association. Bulletin of the Torrey Botanical Club, 53, 7–26.CrossRefGoogle Scholar
  26. Glenn-Lewin, D. C., Peet, R. K., & Veblen, T. T. (Eds.) (1992). Plant succession: Theory and prediction (372 pp.). London, UK: Chapman and Hall.Google Scholar
  27. Godron, M., Daget, P., Long, G., Sauvage, C. H., Emberger, L., Le Flock, E., et al. (1968). Code pour le relevé méthodique de la végétation et du milieu (296 pp.). Montpellier CNRS Paris: Centre c’études phytosociologiques et écologiques.Google Scholar
  28. Gould, W. (2000). Remote sensing of vegetation, plant species richness, and regional biodiversity hotspots. Ecological Applications, 10(6), 1861–1870.CrossRefGoogle Scholar
  29. Goulden, M. L., & Crill, P. M. (1997). Automated measurements of CO2 exchange at the moss surface of a black spruce forest. Tree Physiology, 17, 537–542.Google Scholar
  30. Gounot, B. (1969). Méthodes d‘étude quantitative de la végétation (314 pp.). Paris: Masson et Cie.Google Scholar
  31. Granke, O. (2006). Assessment of Ground Vegetation. ForestBIOTA work report. Available at
  32. Groombridge, B., & Jenkins, M. D. (Eds.) (1996). Assessing biodiversity status and sustainability. WCMC Biodiversity Series 5 (114 pp.). Cambridge: World Conservation.Google Scholar
  33. Gurevitch, J., & Chester, S. T. (1986). Analysis of repeated measures experiments. Ecology, 67(1), 251–255.CrossRefGoogle Scholar
  34. Hanson, H. C. (1934). A comparison of methods of botanical analysis of the native prairie in western North Dakota. Journal of Agricultural Research, 49, 815–842.Google Scholar
  35. Hanson, H. C., & Love, L. D. (1930). Size of list quadrat for use in determining effects of different systems of grazing upon Agropyron smithii mixed prairie. Journal of Agricultural Research, 41, 549–560.Google Scholar
  36. Hill, M. O., & Carey, P. D. (1997). Prediction of yield in the Rothamsted Park Grass Experiment by Ellenberg indicator values. Journal of Vegetation Science, 8, 579–586.CrossRefGoogle Scholar
  37. Hill, M. O., & Gauch, H. G. (1980). Detrended correspondence analysis: An improved ordination technique. Vegetatio, 42, 47–58.CrossRefGoogle Scholar
  38. Hokkanen, P. (2006). Environmental patterns and gradients in the vascular plants and bryophytes of eastern Fennoscandian herb-rich forest. Forest Ecology and Management, 229, 73–87.CrossRefGoogle Scholar
  39. Holopainen, M., & Guangxing, W. (1998). Digitized aerial photographs for assessing forest biodiversity. In P. Bachmann, M. Köhl, & R. Päivinen (Eds.), Assessment of biodiversity for improved forest planning. Forestry sciences (Vol. 51, pp. 249–254). Dordrecht: Kluwer.Google Scholar
  40. Hotanen, J. P., & Vasander, H. (1992). Post-drainage development of vegetation in southern Finnish peatlands studied by numerical analysis. Suo – Mires and Peat, 43(1), 1–10.Google Scholar
  41. Hubbard, W., Latt, C., & Long, A. (1998). Forest terminology for multiple-use management. SS-FOR-11. University of Florida, Cooperative of Extension Service, Institute of Food and Agricultural Sciences.Google Scholar
  42. Jansen, A., Robertson, A., Thompson, L., & Wilson, A. (2004). Development and application of a method for the rapid appraisal of riparian condition. River and Riparian Land Management Technical Guideline. No. 4. Canberra: Land & Water.Google Scholar
  43. Jeffers, J. N. R. (1996). Measurement and characterisation of biodiversity in forest ecosystems new methods and models. In P. Bachman, K. Kuusela, & J. Uuttera (Eds.), Assessment of biodiversity for improved forest management. European Forest Institute proceedings No. 6 (pp. 59–67). Joensuu: European Forest Institute.Google Scholar
  44. Johnson, S. E., Mudrak, E. L., & Waller, D. M. (2006). A comparison of sampling methodologies for long-term forest vegetation monitoring in the Great Lakes Network National Parks. Great Lakes Inventory and Monitoring Network, Ashland, WI. Technical Report: GLKN/2006/03. 140 pp. Available at
  45. Kolari, P., Pumpanen, J., Kulmala, L., Ilvesniemi, H., Nikinmaa, E., Grönholm, T., et al. (2006). Forest floor vegetation plays an important role in photosynthetic production of boreal forests. Forest Ecology and Management, 221, 241–258.Google Scholar
  46. Küchler, A. W. (1967). Vegetation mapping (472 pp.). New York: Ronald.Google Scholar
  47. Kühlmann, S., Heikkinen, J., Särkkä, S., & Hjorth, U. (2001). Relating abundance of ground vegetation species and tree patterns at local scale using ecological field theory. In K. Rennolls (Ed.), Proceedings of IUFRO 4.11 conference: Forest biometry, modelling and information science.Google Scholar
  48. Kupferschmid, A. D., & Bugmann, H. (2005). Predicting decay and ground vegetation development in Picea abies snag stands. Plant Ecology, 179, 247–268.CrossRefGoogle Scholar
  49. Kuuluvainen, T., & Pukkala, T. (1989). Effect of Scots pine seed trees on the density of ground vegetation and tree seedlings. Silva Fennica, 23, 159–167.Google Scholar
  50. Law, B. E., Baldocchi, D. D., & Anthoni, P. M. (1999). Below-canopy and soil CO2 fluxes in a ponderosa pine forest. Agricultural and Forest Meteorology, 94(3), 171–188.CrossRefGoogle Scholar
  51. Londo, G. (1975). The decimal scale for releves of permanent quadrats. Vegetatio, 33, 61–64.CrossRefGoogle Scholar
  52. Madotz, M. (2004). Estudio de los índices de Ellenberg en la vegetación de la región Cantábrica. Ph.D. thesis, EUIT Forestal, Universidad Politécnica de Madrid.Google Scholar
  53. Maurer, B. A. (1999). Untangling ecological complexity: The macroscopic perspective. Chicago: University of Chicago Press.Google Scholar
  54. Mäkipää, R., & Heikkinen, J. (2003). Large-scale changes in abundance of terricolous bryophytes and macrolichens in Finland. Journal of Vegetation Science, 14, 497–508.CrossRefGoogle Scholar
  55. Margalef, R. (1974). Ecologia (951 pp.). Barcelona: Omega.Google Scholar
  56. McCormick, N., & Folving, S. (1998). Monitoring European forest biodiversity at regional scales using satellite remote sensing. In P. Bachmann, M. Köhl, & R. Päivinen (Eds.), Assessment of biodiversity for improved forest planning. European Forest Institute, proceedings no. 18 (pp. 283–289).Google Scholar
  57. McCune, B., & Mefford, M. J. (1999). PC-ORD multivariate analysis of ecological data version 2.0. Gleneden Beach: MjM software design.Google Scholar
  58. McIntosh, R. P. (1985). The background of ecology. Concept and theory (400 pp.). New York: Cambridge University Press.Google Scholar
  59. Mueller-Dombois, D., & Ellenberg, H. (1974). Aims and methods of vegetation ecology (547 pp.). New York: Wiley.Google Scholar
  60. Newton, A. C., & Kapos, V. (2002). Biodiversity indicators in national forest inventories. Unasylva, 53(210), 56–64.Google Scholar
  61. Odenbaugh, J., & de Laplante, K. (2006). What isn’t wrong with ecosystem ecology. In R. A. Skipper, Jr., C. Allen, R. A. Ankeny, C. F. Craver, L. Darden, G. Mikkelson, et al. (Eds.), Philosophy and the life sciences: A reader. MIT Press. Available at’t%20Wrong%20with%20Ecosystem%20Ecology.pdf.
  62. Odum, E. P. (1960). Organic production and turnover in old-field succession. Ecology, 41, 34–49.CrossRefGoogle Scholar
  63. Olsson, B. A., & Staaf, H. (1995). Influence of harvesting intensity of logging residues on ground vegetation in coniferous forests. Journal of Applied Ecology, 32, 640–654.CrossRefGoogle Scholar
  64. Oosting, H. J. (1956). The study of plant communities: An introduction to plant ecology: An introduction to plant ecology. San Francisco: Freeman.Google Scholar
  65. Økland, R. H., Rydgren, K., & Økland, T. (1999). Single tree influence on understorey vegetation in a Norwegian spruce forest. Oikos, 87(3), 488–498.CrossRefGoogle Scholar
  66. Palmer, M. W. (1993). Assesing ground vegetation biodiversity. Ecology, 74(8), 2215–2230.CrossRefGoogle Scholar
  67. Pielou, E. C. (1969). An introduction to mathematical ecology (286 pp.). New York: Wiley.Google Scholar
  68. Pitcairn, C. E. R., Smart, S. M., Fowler, D., & Sutton, M. A. (2004). Bioindicator methods for nitrogen based on community species composition: Higher plants and bryophytes. In M. A. Sutton, C. E. R. Pitcairn, & C. P. Whitfield (Eds.), Bioindicator and biomonitoring methods for assessing the effects of atmospheric nitrogen on statutory nature conservation sites (pp. 65–74). Peterborough: Joint Nature Conservation Committee. Report No. 356.Google Scholar
  69. Porté, A., Dulhoste, R., Lopez, S., Bosc, A., Meredieu, C., Teissier du Cros, R., et al. (2005). Détermination de la biomasse aérienne du sous-bois de peuplements adultes de Pin maritime: contribution à la quantification des stocks de carbone forestier à l’aide d’indicateurs de couvert. In VIIIème colloque ARBORA, “CARBONE, FORET, BOIS: Impacts du changement climatique, stratégies pour la filière”, ISTAB, Bordeaux (pp. 97–107), 1–2 Décembre 2005.Google Scholar
  70. Poso, S., Waite, M. L., & Koivuniemi, J. (1995). Assessment of non-timber functions: Remote sensing technologies. The Monte Verità Conference on Forest Survey designs. “Simplicity versus efficiency” and assessment of non-timber resources (pp. 239–245). Birmensdorf: Swiss Federal Institute for Forest, Snow and Landscape Research.Google Scholar
  71. Qi, J., Marsett, R. C., Moran, M. S., Goodrich, D. C., Heilman, P., Kerr, Y. H., et al. (2000). Spatial and temporal dynamics of vegetation in the San Pedro River basin area. Agricultural and Forest Meteorology, 105, 55–68.CrossRefGoogle Scholar
  72. Raunkiaer, C. (1934). The life forms of plants and statistical plant geography (632 pp.). Oxford: Clarendon.Google Scholar
  73. Roberts-Pichette, P., & Gillespie, L. (1999). Terrestrial vegetation biodiversity monitoring protocols. EMAN Occasional Paper Series, Report No. 9. Burlington: Ecological Monitoring Coordinating Office.Google Scholar
  74. Rondeux, J. (1999). Forest inventories and biodiversity. Available at
  75. Rowe, E. C., Moldan, F., Emmett, B. A., Evans, C., & Hellsten, S. (2005). Model chains for assessing the impacts of nitrogen on soils, waters and biodiversity: A review. Contract Report Project No C02887 for DEFRA (UK) Project No. CPEA 19 (62 pp.). Available at
  76. Saetre, P. (1999). Spatial patterns of ground vegetation, soil microbial biomass and activity in a mixed spruce-birch stand. Ecography, 22, 183–192.CrossRefGoogle Scholar
  77. Schaffers, A. P. (2002). Soil, biomass, and management of semi-natural vegetation—Part I. Interrelationships. Plant Ecology, 158, 229–246.CrossRefGoogle Scholar
  78. Schmidt, H. J. (1986). Proc. Conf. GR 11 Stockholm (p. 117), and Thesis B. Academy of Sciences Berlin, GDR.Google Scholar
  79. Schuck, A., Parviainen, J., & Bücking, W. (1994). A review of approaches to forestry research on structure, succession and biodiversity of undisturbed and semi-natural forests and woodlands in Europe. Working paper 3 (62 pp.). European Forest Institute.Google Scholar
  80. Schulze, E. D., & Mooney, H. A. (1993). Ecosystem function of biodiversity: A summary. In E. D. Schulze & H. A. Mooney (Eds.), Biodiversity and ecosystem function (pp. 497–510). Berlin: Springer.Google Scholar
  81. Scott, G. A. M. (1970). Vegetation studies on Secretary Island, Fiordland. New Zealand Journal of Botany, 8, 30–50.Google Scholar
  82. Shimwell, D. W. (1971). The description and classification of vegetation (322 pp.). Seattle: University of Washington Press.Google Scholar
  83. Silva, T. P., Cardoso Pereira, J. M., Paúl, J. C. P., Santos, M. T. N., & Vasconcelos, J. P. (2006). Estimativa de emissões atmosféricas originadas por fogos rurais em Portugal. Silva Lusitanica, 14(2), 239–263.Google Scholar
  84. Smith, G., Gittings, T., Wilson, M., French, L., Oxbrough, A., O’Donoghue1, S., et al. (2005). BIOFOREST. Assessment of biodiversity at different stages of the forest cycle. Final report, February 2005. Available at
  85. Somogyi, Z., Cienciala, E., Mäkipää, R., Muukkonen, P., Lehtonen, A., & Weiss, P. (2006). Indirect methods of large-scale forest biomass estimation. European Journal of Forest Research, 126(2), 197–207.CrossRefGoogle Scholar
  86. Stohlgren, T. J. (1994). Planning long-term vegetation studies at landscape scales. In J. H. Steele & T. M. Powell (Eds.), Ecological time series (pp. 209–241). New York: Chapman & Hall.Google Scholar
  87. Tansley, A. G., & Chipp, T. F. (Eds.) (1926). Aims and methods in the study of vegetation. London: The British Empire vegetation Committee.Google Scholar
  88. ter Braak, C. J. (1986). Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology, 67, 1167–1179.CrossRefGoogle Scholar
  89. ter Braak, C. J., & Smilauer, P. (1998). CANOCO reference manual and user’s guide to Canoco for windows. Software for canonical community ordination (version 4) (351 pp.). Ithaca: Microcomputer Power.Google Scholar
  90. Terradas, J., Salvador, R., Vayreda, J., & Lloret, F. (2004). Maximal species richness: An empirical approach for evaluating plant forest biodiversity. Forest Ecology and Management, 189, 241–249.CrossRefGoogle Scholar
  91. Thimonier, A., Keller, W., & Dupouey, J. L. (2003). Nitrogen and ground vegetation. Available at:
  92. UNEP (1992). Convention on biological diversity. United Nations Environment Programme. Nairobi. Kenia (52 pp.). Available at:
  93. Vanclay, J. K. (1998). Towards more rigorous assessment of biodiversity. In P. Bachmann, M. Köhl, & R. Päivinen (Eds.), Assessment of biodiversity for improved forest planning, proceedings no. 18 (pp. 211–232). European Forest Institute.Google Scholar
  94. Van Dobben, H. F. (1993). Vegetation as a monitor for deposition of nitrogen and acidity. Ph.D. thesis, Agricultural University of Wageningen, NL.Google Scholar
  95. Walker, L. R. (2005). Margalef y la sucesión ecológica. Ecosistemas, 14(1), 66–78.Google Scholar
  96. Wamelink, G. W. W., Goedhart, P. W., Van Dobben, H. F., & Berendse, F. (2005). Plant species as indicators of soil pH: Replacing expert judgement with measurements. Journal of Vegetation Science, 16(4), 461–470.CrossRefGoogle Scholar
  97. Wamelink, G. W. W., Joosten, V., Van Dobben, H. F., & Berendse, F. (2002). Validity of Ellenberg indicator values judged from physicochemical field measurements. Journal of Vegetation Science, 13, 269–278.CrossRefGoogle Scholar
  98. Wartenberg, D., Ferson, S., & Rohlf, F. J. (1987). Putting things in order: A critique of detrended correspondence analysis. The American Naturalist, 129(3), 434–448.CrossRefGoogle Scholar
  99. Wilson, S. M., Pyatt, D. G., Malcolm, D. C., & Connolly, T. (2001). The use of ground vegetation and humus type as indicators of soil nutrient regime for an ecological site classification of British forests. Forest Ecology and Management, 140(2, 3), 101–116.CrossRefGoogle Scholar
  100. Zavitkovski, J. (1976). Ground vegetation biomass, production, and efficiency of energy utilization in some northern Wisconsin forest ecosystems. Ecology, 57(4), 694–706.CrossRefGoogle Scholar
  101. Zenner, E. K., Kabrick, J. M., Jensen, R. G., Peck, J. E., & Grabner, J. K. (2006). Responses of ground flora to a gradient of harvest intensity in the Missouri Ozarks. Forest Ecology and Management, 222, 326–334.CrossRefGoogle Scholar
  102. Zobel, R. W. (1998). Statistical analysis of a yield trial. Agronomy Journal, 80, 388–393.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.ETSI MontesUniversidad Politécnica De MadridMadridSpain

Personalised recommendations