Advertisement

Environmental Monitoring and Assessment

, Volume 164, Issue 1–4, pp 513–531 | Cite as

Biological community structure on patch reefs in Biscayne National Park, FL, USA

  • Ilsa B. Kuffner
  • Rikki Grober-Dunsmore
  • John C. Brock
  • T. Don Hickey
Open Access
Article

Abstract

Coral reef ecosystem management benefits from continual quantitative assessment of the resources being managed, plus assessment of factors that affect distribution patterns of organisms in the ecosystem. In this study, we investigate the relationships among physical, benthic, and fish variables in an effort to help explain the distribution patterns of organisms on patch reefs within Biscayne National Park, FL, USA. We visited a total of 196 randomly selected sampling stations on 12 shallow (<10 m) patch reefs and measured physical variables (e.g., substratum rugosity, substratum type) and benthic and fish community variables. We also incorporated data on substratum rugosity collected remotely via airborne laser surveying (Experimental Advanced Airborne Research Lidar—EAARL). Across all stations, only weak relationships were found between physical, benthic cover, and fish assemblage variables. Much of the variance was attributable to a “reef effect,” meaning that community structure and organism abundances were more variable at stations among reefs than within reefs. However, when the reef effect was accounted for and removed statistically, patterns were detected. Within reefs, juvenile scarids were most abundant at stations with high coverage of the fleshy macroalgae Dictyota spp., and the calcified alga Halimeda tuna was most abundant at stations with low EAARL rugosity. Explanations for the overwhelming importance of “reef” in explaining variance in our dataset could include the stochastic arrangement of organisms on patch reefs related to variable larval recruitment in space and time and/or strong historical effects due to patchy disturbances (e.g., hurricanes, fishing), as well as legacy effects of prior residents (“priority” effects).

Keywords

Benthic community structure Marine protected areas Overfishing Rugosity 

References

  1. Acosta, A., Sammarco, P. W., & Duarte, L. F. (2001). Asexual reproduction in a zoanthid by fragmentation: The role of exogenous factors. Bulletin of Marine Science, 68(3), 363–381.Google Scholar
  2. Acosta, A., Sammarco, P. W., & Duarte, L. F. (2005). New fission processes in the zoanthid Palythoa caribaeorum: Description and quantitative aspects. Bulletin of Marine Science, 76(1), 1–26.Google Scholar
  3. Almany, G. R. (2003). Priority effects in coral reef fish communities. Ecology, 84(7), 1920–1935. doi: 10.1890/0012-9658(2003)084[1920:PEICRF]2.0.CO;2.CrossRefGoogle Scholar
  4. Aronson, R. B., & Precht, W. F. (2000). Herbivory and algal dynamics on the coral reef at Discovery Bay, Jamaica. Limnology and Oceanography, 45(1), 251–255.Google Scholar
  5. Ault, J. S., Smith, S. G., Meester, G. A., Juo, J., & Bohnsack, J. A. (2001). Site characterization for Biscayne National Park: Assessment of fisheries resources and habitats (p. 156). NOAA Technical Memorandum NMFS-SEFSC-468.Google Scholar
  6. Beach, K., Walters, L., Borgeas, H., Smith, C., Coyer, J., & Vroom, P. (2003). The impact of Dictyota spp. on Halimeda populations of Conch Reef, Florida Keys. Journal of Experimental Marine Biology and Ecology, 297, 141–159. doi: 10.1016/j.jembe.2003.07.003.CrossRefGoogle Scholar
  7. Bellwood, D. R., & Choat, J. H. (1990). A functional analysis of grazing in parrot fishes (family Scaridae): The ecological implications. Environmental Biology of Fishes, 28, 189–214. doi: 10.1007/BF00751035.CrossRefGoogle Scholar
  8. Blair, S. M., McIntosh, T. L., & Mostkoff, B. J. (1994). Impacts of Hurricane Andrew on the offshore reef systems of central and northern Dade County, Florida. Bulletin of Marine Science, 54(3), 961–973.Google Scholar
  9. Bohnsack, J. A., & Bannerot, S. P.(1986). A stationary visual census technique for quantitatively assessing community structure of coral reef fishes (p. 15). NOAA Technical Report 41.Google Scholar
  10. Brazeau, D. A., & Lasker, H. R. (1990). Sexual reproduction and external brooding by the Caribbean gorgonian Briareum asbestinum. Marine Biology (Berlin), 104, 465–474. doi: 10.1007/BF01314351.CrossRefGoogle Scholar
  11. Brazeau, D. A., & Lasker, H. R. (1992). Growth rates and growth strategy in a clonal marine invertebrate, the Caribbean octocoral Briareum asbestinum. The Biological Bulletin, 183, 269–277. doi: 10.2307/1542214.CrossRefGoogle Scholar
  12. Brock, J. C., Wright, C. W., Kuffner, I. B., Hernandez, R., & Thompson, P. (2006a). Airborne lidar sensing of massive stony coral colonies on patch reefs in the northern Florida reef tract. Remote Sensing of Environment, 104(1), 31–42. doi: 10.1016/j.rse.2006.04.017.CrossRefGoogle Scholar
  13. Brock, J. C., Wright, C. W., Patterson, M., Nayegandhi, A., Patterson, J., Harris, M. S., & Mosher, L. (2006b). USGS-NPS-NASA EAARL submarine topography: Biscayne National Park. US Geological Survey Open File Report 2006-1118.Google Scholar
  14. Burns, T. P. (1985). Hard-coral distribution and cold-water disturbances in South Florida: Variation with depth and location. Coral Reefs, 4, 117–124. doi: 10.1007/BF00300870.CrossRefGoogle Scholar
  15. Bythell, J. C., Hillis-Starr, Z. M., & Rogers, C. S. (2000). Local variability but landscape stability in coral reef communities following repeated hurricane impacts. Marine Ecology Progress Series, 204, 93–100. doi: 10.3354/meps204093.CrossRefGoogle Scholar
  16. Carpenter, R. C. (1988). Mass mortality of a Caribbean sea urchin: Immediate effects on community metabolism and other herbivores. Proceedings of the National Academy of Sciences of the United States of America, 85, 511–514. doi: 10.1073/pnas.85.2.511.CrossRefGoogle Scholar
  17. Chapman, M. R., & Kramer, D. L. (2001). Gradients in coral reef fish density and size across the Barbados Marine Reserve boundary: Effects of reserve protection and habitat characteristics. Marine Ecology Progress Series, 181, 81–96. doi: 10.3354/meps181081.CrossRefGoogle Scholar
  18. Chiappone, M., & Sullivan, K. M. (1997). Rapid assessment of reefs in the Florida Keys: Results from a synoptic survey. In Proc 8th int coral reef symp (pp. 1509–1514). Panama.Google Scholar
  19. Chiappone, M., Swanson, D. W., Miller, S. L., & Smith, S. G. (2002). Large-scale surveys on the Florida Reef Tract indicate poor recovery of the long-spined sea urchin Diadema antillarum. Coral Reefs, 21(2), 155–159.Google Scholar
  20. Chittaro, P. M. (2004). Fish–habitat associations across multiple spatial scales. Coral Reefs, 23(2), 235–244. doi: 10.1007/s00338-004-0376-z.CrossRefGoogle Scholar
  21. Clarke, K. R., & Warwick, R. M. (2001). Change in marine communities: An approach to statistical analysis and interpretation (2nd ed.). Plymouth: PRIMER-E Ltd.Google Scholar
  22. Connell, J. H. (1978). Diversity in tropical rain forests and coral reefs. Science, 199, 1302–1310. doi: 10.1126/science.199.4335.1302.CrossRefGoogle Scholar
  23. Connolly, S. R., Hughes, T. P., Bellwood, D. R., & Karlson, R. H. (2005). Community structure of corals and reef fishes at multiple scales. Science, 309, 1363–1365. doi: 10.1126/science.1113281.CrossRefGoogle Scholar
  24. Dahl, A. L. (1973). Surface area in ecological analysis: Quantification of benthic coral-reef algae. Marine Biology (Berlin), 23, 239–249. doi: 10.1007/BF00389331.CrossRefGoogle Scholar
  25. Doherty, P., & Fowler, T. (1994). An empirical test of recruitment limitation in a coral reef fish. Science, 263, 935–939. doi: 10.1126/science.263.5149.935.CrossRefGoogle Scholar
  26. Dupont, J. M., Jaap, W. C., & Hallock, P. (2008). A retrospective analysis and comparative study of stony coral assemblages in Biscayne National Park, FL (1977–2000). Caribbean Journal of Science, 44(3), 334–344.Google Scholar
  27. Eagle, J. V., Jones, G. P., & McCormick, M. I. (2001). A multi-scale study of the relationships between habitat use and the distribution and abundance patterns of three coral reef angelfishes (Pomacanthidae). Marine Ecology Progress Series, 214, 253–265. doi: 10.3354/meps214253.CrossRefGoogle Scholar
  28. Edmunds, P. J. (2000). Patterns in the distribution of juvenile corals and coral reef community structure in St. John, US Virgin Islands. Marine Ecology Progress Series, 202, 113–124. doi: 10.3354/meps202113.CrossRefGoogle Scholar
  29. Edmunds, P. J., & Carpenter, R. C. (2001). Recovery of Diadema antillarum reduces macroalgal cover and increases abundance of juvenile corals on a Caribbean reef. Proceedings of the National Academy of Sciences of the United States of America, 98(9), 5067–5071. doi: 10.1073/pnas.071524598.CrossRefGoogle Scholar
  30. Friedlander, A. M., & DeMartini, E. E. (2002). Contrasts in density, size, and biomass of reef fishes between the northwestern and the main Hawaiian islands: The effects of fishing down apex predators. Marine Ecology Progress Series, 230, 253–264. doi: 10.3354/meps230253.CrossRefGoogle Scholar
  31. Gardner, T. A., Cote, I. M., Gill, J. A., Grant, A., & Watkinson, A. R. (2003). Long-term region-wide declines in Caribbean corals. Science, 301, 958–960. doi: 10.1126/science.1086050.CrossRefGoogle Scholar
  32. Ginsburg, R. N., Gischler, E., & Kiene, W. E. (2001). Partial mortality of massive reef-building corals: An index of patch reef condition, Florida reef tract. Bulletin of Marine Science, 69(3), 1149–1173.Google Scholar
  33. Goldberg, W. M. (1973). The ecology of the coral–octocoral communities off the southeast Florida coast: Geomorphology, species composition, and zonation. Bulletin of Marine Science, 23(3), 465–488.Google Scholar
  34. Graham, N. A. J., Wilson, S. K., Jennings, S., Polunin, N. V. C., Bijoux, J. P., & Robinson, J. (2006). Dynamic fragility of oceanic coral reef ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 103(22), 8425–8429. doi: 10.1073/pnas.0600693103.CrossRefGoogle Scholar
  35. Gratwicke, B., & Speight, M. R. (2005). The relationship between fish species richness, abundance and habitat complexity in a range of shallow tropical marine habitats. Journal of Fish Biology, 66, 650–667. doi: 10.1111/j.0022-1112.2005.00629.x.CrossRefGoogle Scholar
  36. Greenstein, B. J., & Pandolfi, J. M. (1997). Preservation of community structure in modern reef coral life and death assemblages of the Florida Keys: Implications for the Quaternary fossil record of coral reefs. Bulletin of Marine Science, 61(2), 431–452.Google Scholar
  37. Grober-Dunsmore, R., Frazer, T. K., Lindberg, W. J., & Beets, J. (2007). Reef fish and habitat relationships in a Caribbean seascape: The importance of reef context. Coral Reefs, 26, 201–216. doi: 10.1007/s00338-006-0180-z.CrossRefGoogle Scholar
  38. Halpern, B. S., & Warner, R. R. (2002). Marine reserves have rapid and lasting effects. Ecology Letters, 5, 361–366. doi: 10.1046/j.1461-0248.2002.00326.x.CrossRefGoogle Scholar
  39. Herren, L. W., Walters, L. J., & Beach, K. S. (2006). Fragment generation, survival, and attachment of Dictyota spp. at Conch Reef in the Florida Keys, USA. Coral Reefs, 25, 287–295. doi: 10.1007/s00338-006-0096-7.CrossRefGoogle Scholar
  40. Heyward, A. J., & Negri, A. P. (1999). Natural inducers for coral larval metamorphosis. Coral Reefs, 18, 273–279. doi: 10.1007/s003380050193.CrossRefGoogle Scholar
  41. Hixon, M. A. (1997). Effects of reef fishes on corals and algae. In: C. E. Birkeland (Ed.), Life and death of coral reefs (pp. 230–248). New York: Chapman and Hall.Google Scholar
  42. Hoegh-Guldberg, O. (1999). Climate change, coral bleaching and the future of the world’s coral reefs. Australian Journal of Marine and Freshwater Research, 50, 839–866. doi: 10.1071/MF99078.CrossRefGoogle Scholar
  43. Hughes, T. P. (1989). Community structure and diversity of coral reefs: The role of history. Ecology, 70(1), 275–279. doi: 10.2307/1938434.CrossRefGoogle Scholar
  44. Hughes, T. P. (1994). Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science, 265, 1547–1551. doi: 10.1126/science.265.5178.1547.CrossRefGoogle Scholar
  45. Hughes, T. P., & Connell, J. H. (1999). Multiple stressors on coral reefs: A long-term perspective. Limnology and Oceanography, 44(3), 932–940.Google Scholar
  46. Jaap, W. C. (1984). The ecology of the South Florida coral reefs: A community profile (p. 138). Minerals Management Service, MMS 84-0038.Google Scholar
  47. Jones, J. A. (1977). Morphology and development of southeastern Florida patch reefs . In Proceedings of the 3rd international coral reef symposium (pp. 231–235). Miami.Google Scholar
  48. Karlson, R. H. (1980). Alternative competitive strategies in a periodically disturbed habitat. Bulletin of Marine Science, 30(4), 894–900.Google Scholar
  49. Keller, B. D., & Causey, B. D. (2005). Linkages between the Florida Keys National Marine Sanctuary and the South Florida Ecosystem Restoration Initiative. Ocean and Coastal Management, 48, 869–900. doi: 10.1016/j.ocecoaman.2005.03.008.CrossRefGoogle Scholar
  50. Keough, M. J., & Downes, B. J. (1982). Recruitment of marine invertebrates: The role of active larval choices and early mortality. Oecologia, 54, 348–352. doi: 10.1007/BF00380003.CrossRefGoogle Scholar
  51. Kuffner, I. B., Walters, L. J., Becerro, M. A., Paul, V. J., Ritson-Williams, R., & Beach, K. S. (2006). Inhibition of coral recruitment by macroalgae and cyanobacteria. Marine Ecology Progress Series, 323, 107–117. doi: 10.3354/meps323107.CrossRefGoogle Scholar
  52. Kuffner, I. B., Brock, J. C., Grober-Dunsmore, R., Bonito, V. E., Hickey, T. D., & Wright, C. W. (2007). Relationships between reef fish communities and remotely sensed rugosity measurements in Biscayne National Park, Florida, U.S.A. Environmental Biology of Fishes, 78(1), 71–82. doi: 10.1007/s10641-006-9078-4.CrossRefGoogle Scholar
  53. Kuffner, I. B., Brock, J. C., Grober-Dunsmore, R., Hickey, T. D., Bonito, V., Bracone, J. E., & Wright, C. W. (2008). Biological communities and geomorphology of patch reefs in Biscayne National Park, Florida, U.S.A. US Geological Survey Open File Report 2008-1330.Google Scholar
  54. Lewis, J. B. (2004). Has random sampling been neglected in coral reef faunal surveys? Coral Reefs, 23(2), 192–194. doi: 10.1007/s00338-004-0377-y.CrossRefGoogle Scholar
  55. Lirman, D., & Biber, P. (2000). Seasonal dynamics of macroalgal communities of the northern Florida reef tract. Botanica Marina, 43, 305–314. doi: 10.1515/BOT.2000.033.CrossRefGoogle Scholar
  56. Lirman, D., & Fong, P. (2007). Is proximity to land-based sources of coral stressors an appropriate measure of risk to coral reefs? An example from the Florida Reef Tract. Marine Pollution Bulletin, 54, 779–791. doi: 10.1016/j.marpolbul.2006.12.014.CrossRefGoogle Scholar
  57. Maliao, R. J., Turingan, R. G., & Lin, J. (2008). Phase-shift in coral reef communities in the Florida Keys National Marine Sanctuary (FKNMS), USA. Marine Biology (Berlin), 154, 841–853. doi: 10.1007/s00227-008-0977-0.CrossRefGoogle Scholar
  58. Marszalek, D. S., Babashoff, G., Noel, M. R., & Worley, D. R. (1977). Reef distribution in South Florida . In Proceedings of the 3rd international coral reef symposium (pp. 223–229). Miami.Google Scholar
  59. McAfee, S. T., & Morgan, S. G. (1996). Resource use by five sympatric parrot fishes in the San Blas Archipelago, Panama. Marine Biology (Berlin), 125, 427–437.Google Scholar
  60. McClanahan, T. R. (1994). Kenyan coral reef lagoon fish: Effects of fishing, substrate complexity, and sea urchins. Coral Reefs, 13, 231–241. doi: 10.1007/BF00303637.CrossRefGoogle Scholar
  61. Miller, M. W., Weil, E., & Szmant, A. M. (2000a). Coral recruitment and juvenile mortality as structuring factors for reef benthic communities in Biscayne National Park, USA. Coral Reefs, 19(2), 115–123. doi: 10.1007/s003380000079.CrossRefGoogle Scholar
  62. Miller, S. L., Swanson, D. W., & Chiappone, M. (2000b). Multiple spatial scale assessment of coral reef and hard-bottom community structure in the Florida Keys National Marine Sanctuary . In Proceedings of the 9th international coral reef symposium (pp. 69–74). Bali, Indonesia.Google Scholar
  63. Morrison, D. (1988). Comparing fish and urchin grazing in shallow and deeper coral reef algal communities. Ecology, 69(5), 1367–1382. doi: 10.2307/1941634.CrossRefGoogle Scholar
  64. Morse, D. E., Hooker, N., Morse, A. N. C., & Jensen, R. A. (1988). Control of larval metamorphosis and recruitment in sympatric agariciid corals. Journal of Experimental Marine Biology and Ecology, 116, 193–217. doi: 10.1016/0022-0981(88)90027-5.CrossRefGoogle Scholar
  65. Murdoch, T. J. T., & Aronson, R. B. (1999). Scale-dependent spatial variability of coral assemblages along the Florida Reef Tract. Coral Reefs, 18(4), 341–351. doi: 10.1007/s003380050210.CrossRefGoogle Scholar
  66. Paddack, M. J., Cowen, R. K., & Sponaugle, S. (2006). Grazing pressure of herbivorous coral reef fishes on low coral-cover reefs. Coral Reefs, 25, 461–472. doi: 10.1007/s00338-006-0112-y.CrossRefGoogle Scholar
  67. Pandolfi, J. M., & Jackson, J. B. C. (2006). Ecological persistence interrupted in Caribbean coral reefs. Ecology Letters, 9, 818–826. doi: 10.1111/j.1461-0248.2006.00933.x.CrossRefGoogle Scholar
  68. Pandolfi, J. M., Bradbury, R. H., Sala, E., Hughes, T. P., Bjorndal, K. A., Cooke, R. G., et al. (2003). Global trajectories of the long-term decline of coral reef ecosystems. Science, 301, 955–958. doi: 10.1126/science.1085706.CrossRefGoogle Scholar
  69. Pandolfi, J. M., Jackson, J. B. C., Baron, N., Bradbury, R. H., Guzman, H. M., Hughes, T. P., et al. (2005). Are U.S. coral reefs on the slippery slope to slime? Science, 307, 1725–1726. doi: 10.1126/science.1104258.CrossRefGoogle Scholar
  70. Porter, J. W., & Meier, O. W. (1992). Quantification of loss and change in Floridian reef coral populations. American Zoologist, 32, 625–640.Google Scholar
  71. Porter, J. W., Kosmynin, V., Patterson, K. L., Porter, K. G., Jaap, W. C., Wheaton, J. L., et al. (2002). Detection of coral reef change by the Florida Keys Coral Reef Monitoring Project. In: J. W. Porter & K. G. Porter (Eds.), The everglades, Florida Bay, and coral reefs of the Florida Keys: An ecosystem sourcebook (pp. 749–769). Boca Raton: CRC Press.Google Scholar
  72. Risk, M. J. (1972). Fish diversity on a coral reef in the Virgin Islands. Atoll Research Bulletin, 153, 1–6.Google Scholar
  73. Russ, G. R. (2003). Grazer biomass correlates more strongly with production than with biomass of algal turfs on a coral reef. Coral Reefs, 22, 63–67.Google Scholar
  74. Sale, P. F., & Douglas, W. A. (1984). Temporal variability in the community structure of fish on coral patch reefs and the relation of community structure to reef structure. Ecology, 65(2), 409–422. doi: 10.2307/1941404.CrossRefGoogle Scholar
  75. Suchanek, T. H., & Green, D. J. (1981). Interspecific competition between Palythoa caribaeorum and other sessile invertebrates on St. Croix reefs, US Virgin Islands. In Proceedings of the 4th international coral reef symposium (pp. 679–684). Manila.Google Scholar
  76. Syms, C. (1995). Multi-scale analysis of habitat association in a guild of blennioid fishes. Marine Ecology Progress Series, 125, 31–43. doi: 10.3354/meps125031.CrossRefGoogle Scholar
  77. Syms, C., & Jones, G. P. (2000). Disturbance, habitat structure, and the dynamics of a coral-reef fish community. Ecology, 81(10), 2714–2729.CrossRefGoogle Scholar
  78. Tilmant, J. T., Curry, R. W., Jones, J., Szmant, A., Zieman, J. C., Flora, M., et al. (1994). Hurricane Andrew’s effects on marine resources. Bioscience, 44(4), 230–237. doi: 10.2307/1312227.CrossRefGoogle Scholar
  79. Vroom, P., Walters, L., Beach, K., Coyer, J., Smith, J., Abgrall, M., et al. (2005). Hurricane induced propagation and rapid regrowth of the weedy brown alga Dictyota in the Florida Keys. Florida Scientist, 68, 161–174.Google Scholar
  80. Walters, L. J., & Smith, C. M. (1994). Rapid rhizoid production in Halimeda discoidea Decaisne (Chlorophyta, Caulerpales) fragments: A mechanism for survival after separation from adult thalli. Journal of Experimental Marine Biology and Ecology, 175(1), 105–120. doi: 10.1016/0022-0981(94)90178-3.CrossRefGoogle Scholar
  81. Wilkinson, C. R. (1999). Global and local threats to coral reef functioning and existence: Review and predictions. Marine & Freshwater Research, 50, 867–878. doi: 10.1071/MF99121.CrossRefGoogle Scholar
  82. Williams, A. H. (1981). An analysis of competitive interactions in a patchy back-reef environment. Ecology, 62(4), 1107–1120. doi: 10.2307/1937008.CrossRefGoogle Scholar
  83. Williams, I. D., & Polunin, N. V. C. (2001). Large-scale associations between macroalgae cover and grazer biomass on mid-depth reefs in the Caribbean. Coral Reefs, 19(4), 358–366.Google Scholar
  84. Williams, I. D., Polunin, N. V. C., & Hendrick, V. J. (2001). Limits to grazing by herbivorous fishes and the impact of low coral cover on macroalgal abundance on a coral reef in Belize. Marine Ecology Progress Series, 222, 187–196. doi: 10.3354/meps222187.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  • Ilsa B. Kuffner
    • 1
  • Rikki Grober-Dunsmore
    • 2
  • John C. Brock
    • 3
  • T. Don Hickey
    • 1
  1. 1.US Geological SurveySt. PetersburgUSA
  2. 2.Institute of Applied SciencesUniversity of the South PacificSuvaFiji
  3. 3.US Geological Survey National CenterRestonUSA

Personalised recommendations