Environmental Monitoring and Assessment

, Volume 164, Issue 1–4, pp 337–348 | Cite as

Establishment of a cross-European field site network in the ALARM project for assessing large-scale changes in biodiversity

  • V. C. Hammen
  • J. C. Biesmeijer
  • R. Bommarco
  • E. Budrys
  • T. R. Christensen
  • S. Fronzek
  • R. Grabaum
  • P. Jaksic
  • S. Klotz
  • P. Kramarz
  • G. Kröel-Dulay
  • I. Kühn
  • M. Mirtl
  • M. Moora
  • T. Petanidou
  • J. Pino
  • S. G. Potts
  • A. Rortais
  • C. H. Schulze
  • I. Steffan-Dewenter
  • J. Stout
  • H. Szentgyörgyi
  • M. Vighi
  • A. Vujic
  • C. Westphal
  • T. Wolf
  • G. Zavala
  • M. Zobel
  • J. Settele
  • W. E. Kunin
Article

Abstract

The field site network (FSN) plays a central role in conducting joint research within all Assessing Large-scale Risks for biodiversity with tested Methods (ALARM) modules and provides a mechanism for integrating research on different topics in ALARM on the same site for measuring multiple impacts on biodiversity. The network covers most European climates and biogeographic regions, from Mediterranean through central European and boreal to subarctic. The project links databases with the European-wide field site network FSN, including geographic information system (GIS)-based information to characterise the test location for ALARM researchers for joint on-site research. Maps are provided in a standardised way and merged with other site-specific information. The application of GIS for these field sites and the information management promotes the use of the FSN for research and to disseminate the results. We conclude that ALARM FSN sites together with other research sites in Europe jointly could be used as a future backbone for research proposals.

Keywords

ALARM Multiple pressures Risk assessment Biodiversity Field site network Global change 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Araújo, M. B., & Rahbek, C. (2006). How does climate change affect biodiversity? Science, 313(5792), 1396–1397. doi:10.1126/science.1131758.CrossRefGoogle Scholar
  2. Biesmeijer, J. C., Roberts, S. P. M., Reemer, M., Ohlemüller, R., Edwards, M., Peeters, T., et al. (2006). Parallel declines in pollinators and insect-pollinated plants in britain and the Netherlands. Science, 313(5785), 351–354. doi:10.1126/science.1127863.CrossRefGoogle Scholar
  3. Brown, N., Gerard, F., & Fuller, R. (2002). Mapping of land use classes within the CORINE Land Cover Map of Great Britain. The Cartographic Journal, 39(1), 5–14.Google Scholar
  4. Herzog, F., Steiner, B., Bailey, D., Baudry, J., Billeter, R., Bukacek, R., et al. (2006). Assessing the intensity of temperate European agriculture at the landscape scale. European Journal of Agronomy, 24(2), 165–181. doi:10.1016/j.eja.2005.07.006.CrossRefGoogle Scholar
  5. Mitchell, T. D., Carter, T. R., Jones, P. D., Hulme, M., & New, M. (2004). A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: The observed record (1901–2000) and 16 scenarios (2001–2100) (30 pp.). Tyndall centre working paper 55, Tyndall Centre for Climate Change Research, University of East Anglia, Norwich, UK.Google Scholar
  6. Moora, M., Daniell, T., Kalle, H., Liira, J., Püssa, K., Roosaluste, E., et al. (2007). Spatial pattern and species richness of boreonemoral forest understorey and its determinants—A comparison of differently managed forests. Forest Ecology and Management, 250, 64–70. doi:10.1016/j.foreco.2007.03.010.CrossRefGoogle Scholar
  7. Öpik, M., Moora, M., Zobel, M., Saks, Ü., Wheatley, R., Wright, F., et al. (2008). High diversity of arbuscular mycorrhizal fungi in a boreal herb-rich coniferous forest. The New Phytologist, 179, 867–876. doi:10.1111/j.1469-8137.2008.02515.x.CrossRefGoogle Scholar
  8. Parr, T. W., Sier, A. R. J., Battarbee, R. W., Mackay, A., & Burgess, J. (2003). Detecting environmental change: science and society—Perspectives on long-term research and monitoring in the 21st century. The Science of the Total Environment, 310(1–3), 1–8. doi:10.1016/S0048-9697(03)00257-2.CrossRefGoogle Scholar
  9. Schweiger, O., Maelfait, J. P., Wingerden, W., Hendrickx, F., Billeter, R., Speelmans, M., et al. (2005). Quantifying the impact of environmental factors on arthropod communities in agricultural landscapes across organizational levels and spatial scales. Journal of Applied Ecology, 42(6), 1129–1139. doi:10.1111/j.1365-2664.2005.01085.x.CrossRefGoogle Scholar
  10. Settele, J., Hammen, V., Hulme, P., Karlson, U., Klotz, S., Kotarac, M., et al. (2005). ALARM—Assessing large-scale environmental risks for biodiversity with tested methods. GAIA, 14(1), 69–72.Google Scholar
  11. Spangenberg, J. (2007). Integrated scenarios for assessing biodiversity risks. Sustainable Development, 15(6), 343–356. doi:10.1002/sd.320.CrossRefGoogle Scholar
  12. Walther, G. R., Beissner, S., & Burga, C. A. (2005). Trends in the upward shift of alpine plants. Journal of Vegetation Science, 16(5), 541–548. doi:10.1658/1100-9233(2005)16[541:TITUSO]2.0.CO;2.CrossRefGoogle Scholar
  13. Waser, L. T., Stofer, S., Schwartz, M., Küchler, M., Ivits, E., & Scheidegger, C. (2004). Prediction of biodiversity—regression of lichen species richness on remote sensing data. Community Ecology, 5(1), 121–133. doi:10.1556/ComEc.5.2004.1.12.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • V. C. Hammen
    • 1
  • J. C. Biesmeijer
    • 2
  • R. Bommarco
    • 3
  • E. Budrys
    • 4
  • T. R. Christensen
    • 5
  • S. Fronzek
    • 6
  • R. Grabaum
    • 7
  • P. Jaksic
    • 8
  • S. Klotz
    • 1
  • P. Kramarz
    • 9
  • G. Kröel-Dulay
    • 10
  • I. Kühn
    • 1
  • M. Mirtl
    • 11
  • M. Moora
    • 12
  • T. Petanidou
    • 13
  • J. Pino
    • 14
  • S. G. Potts
    • 15
  • A. Rortais
    • 16
  • C. H. Schulze
    • 17
  • I. Steffan-Dewenter
    • 18
  • J. Stout
    • 19
  • H. Szentgyörgyi
    • 9
  • M. Vighi
    • 20
  • A. Vujic
    • 21
  • C. Westphal
    • 18
  • T. Wolf
    • 22
  • G. Zavala
    • 23
  • M. Zobel
    • 12
  • J. Settele
    • 1
  • W. E. Kunin
    • 2
  1. 1.Department of Community EcologyCentre for Environmental Research (UFZ) Leipzig-HalleHalle (Saale)Germany
  2. 2.Institute of Integrative and Comparative Biology and Earth and Biosphere InstituteUniversity of LeedsLeedsUK
  3. 3.Swedish University of Agricultural SciencesUppsalaSweden
  4. 4.Institute of Ecology of Vilnius UniversityVilniusLithuania
  5. 5.Lund UniversityLundSweden
  6. 6.Finnish Environment InstituteHelsinkiFinland
  7. 7.OLANIS Expert Systems GmbHLeipzigGermany
  8. 8.Institute for Biological Research “Sinisa Stankovic”University of BelgradeBelgradeSerbia
  9. 9.Jagiellonian UniversityKrakowPoland
  10. 10.Institute of Ecology and Botany of the Hungarian Academy of SciencesVácrátótHungary
  11. 11.Federal Environment AgencyViennaAustria
  12. 12.Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
  13. 13.Laboratory of Biogeography and Ecology, Department of GeographyUniversity of the AegeanMytileneGreece
  14. 14.Center for Ecological Research and Forestry ApplicationsBellaterra, BarcelonaSpain
  15. 15.Centre for Agri-Environmental Research (CAER)University of ReadingReadingUK
  16. 16.Laboratoire Evolution, Génomes, Spéciation, CNRS UPR 9034Gif-sur-YvetteFrance
  17. 17.Department of Population Ecology, Faculty of Life SciencesUniversity of ViennaViennaAustria
  18. 18.Department of Animal Ecology IUniversity of BayreuthBayreuthGermany
  19. 19.School of Natural SciencesTrinity College DublinDublin 2Republic of Ireland
  20. 20.University of Milano BicoccaMilanItaly
  21. 21.Centre for the Balkan Biodiversity Conservation, PMF, Departman za biologiju i ekologijuNovi SadSerbia
  22. 22.Institute of GeographyUniversity of LeipzigLeipzigGermany
  23. 23.University of Castilla-La ManchaAlbaceteSpain

Personalised recommendations