Indoor and outdoor airborne bacteria in child day-care centers in Edirne City (Turkey), seasonal distribution and influence of meteorological factors

  • Halide Aydogdu
  • Ahmet AsanEmail author
  • Muserref Tatman Otkun


This paper presents information about airborne mesophilic bacteria in the indoor and outdoor air of child day-care centers (CDCCs) in the city of Edirne, Turkey. Air samples were collected using the Petri plate gravitational settling method from the indoor and outdoor air of CDCCs. Counts of airborne bacteria were measured as colony forming units (CFU) collected by gravity onto Brain Heart Infusion Agar plates (with 5% sheep blood). Samples were taken monthly over a period of 12 months between January and December 2004. A total of 3,120 bacteria colonies were counted on 192 Petri plates. Four groups of culturable bacteria were identified: Gram-positive cocci, Gram-positive bacilli, endospore-forming Gram-positive bacilli, and Gram-negative bacteria. Airborne Gram-positive bacteria were the most abundant at more than 95% of the measured population. While Gram-positive cocci were more common in indoor environments, Gram-positive bacilli were more dominant in outdoor air. Bacteria commonly isolated from CDCCs were identified at a genus level. Staphylococcus (39.16%), Bacillus (18.46%), Corynebacterium (16.25%), and Micrococcus (7.21%) were dominant among the genera identified in the present study. The dominant genera identified in the day-care centers were Staphylococcus, Micrococcus, and Corynebacterium for indoor air and Bacillus, Corynebacterium, and Staphylococcus for outdoor air. Staphylococcus, Streptococcus, Bacillus, and Corynebacterium genera were found in samples from every month. Bacterial colony counts were compared by sampling location (indoors and outdoors), seasons, and meteorological factors. We found negative correlations between the monthly total outdoor bacterial counts and the sampling day’s average relative humidity and average rainfall, and the monthly average rainfall. Fluctuations in bacterial counts in different seasons were observed.


Airborne bacteria Child day-care centers Indoor–outdoor air Meteorological parameters Biomass 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arbes, S. J., Sever, M., Mehta, J., Collette, N., Thomas, B., & Zeldin, D. C. (2005). Exposure to indoor allergens in day-care facilities: Results from 2 North Carolina counties. Journal of Allergy and Clinical Immunology, 116, 133–139. doi: 10.1016/j.jaci.2005.04.022.CrossRefGoogle Scholar
  2. Awad, A. H. A. (2007). Airborne dust, bacteria, actinomycetes and fungi at a flourmill. Aerobiologia, 23, 59–69. doi: 10.1007/s10453-007-9049-z.CrossRefGoogle Scholar
  3. Awad, A. H. A., Khoder, M. I., & Emad, A. A. (2007). Fertile fungal spores collected on different faced surfaces in the atmosphere of Giza, Egypt. Aerobiologia, 23, 47–57. doi: 10.1007/s10453-007-9049-z.CrossRefGoogle Scholar
  4. Aydogdu, H., & Asan, A. (2008). Airborne fungi in child day care centers in Edirne City, Turkey. Environmental Monitoring and Assessment, 147, 423–444. doi: 10.1007/s10661-007-0130-4.CrossRefGoogle Scholar
  5. Aydogdu, H., Asan, A., Otkun, M. T., & Ture, M. (2005). Monitoring of fungi and bacteria in the indoor air of primary schools in Edirne City, Turkey. Indoor and Built Environment, 14, 411–425. doi: 10.1177/1420326X05057539.CrossRefGoogle Scholar
  6. Baron, E. J., Peterson, L. R., & Finegold, S. M. (1994). Bailey and Scott’s diagnostic microbiology (958 pp., 9th edn.). St Louis, USA: Mosby-Year Book, Inc.Google Scholar
  7. Bartlett, K. H., Kennedy, S. M., Brauer, M., Netten, C. V., & Dill, B. (2004). Evaluation and determinants of airborne bacterial concentrations in school classrooms. Journal of Occupational and Environmental Hygiene, 1, 639–647. doi: 10.1080/15459620490497744.CrossRefGoogle Scholar
  8. Bovallius, A., Bucht, B., Roffey, R., & Anas, P. (1978). Three-year investigation of the natural airborne bacterial flora at four localities in Sweden. Applied and Environmental Microbiology, 35, 847–852.Google Scholar
  9. Di Giorgio, C., Krempff, A., Guiraud, H., Binder, P., Tiret, C., & Dumenil, G. (1995). Atmospheric pollution by airborne microorganisms in the city of Marseilles. Atmospheric Environment, 30, 155–160. doi: 10.1016/1352-2310(95)00143-M.Google Scholar
  10. Dunder, T., Tapiainen, T., Pokka, T., & Uhari, M. (2007). Infections in child day care centers and later development of asthma, allergic rhinitis, and atopic dermatitis. Archives of Pediatrics & Adolescent Medicine, 161, 972–977. doi: 10.1001/archpedi.161.10.972.CrossRefGoogle Scholar
  11. Fabian, M. P., Miller, S. L., Reponen, T., & Her nandez, M. T. (2005). Ambient bioaerosol indices for indoor air quality assessments of flood reclamation. Aerosol Science, 36, 763–783. doi: 10.1016/j.jaerosci.2004.11.018.CrossRefGoogle Scholar
  12. Fang, Z., Ouyang, Z. Y., Hu, L. F., Wang, X. K., & Lin, X. O. (2005). Community structure and ecological distribution of airborne microbes in summer in Beijing. Acta Ecologica Sinica, 25, 83–88.Google Scholar
  13. Fang, Z., Ouyang, Z. Y., Zheng, H., Wang, X., & Hu, L. (2007). Culturable airborne bacteria in outdoor environments in Beijing, China. Microbial Ecology, 54, 487–496. doi: 10.1007/s00248-007-9216-3.CrossRefGoogle Scholar
  14. Fischer, G., Albrecht, A., Jäckel, U. & Kämpfer, P. (2008). Analysis of airborne microorganisms, MVOC and odour in the surrounding of composting facilities and implications for future investigations. International Journal of Hygiene and Environmental Health, 211, 132–142. doi: 10.1016/j.ijheh.2007.05.003.CrossRefGoogle Scholar
  15. Godish, D. R., & Godish, T. J. (2007). Relationship between sampling duration and concentration of culturable airborne mould and bacteria on selected culture media. Journal of Applied Microbiology, 102, 1479–1484. doi: 10.1111/j.1365-2672.2006.03200.x.CrossRefGoogle Scholar
  16. Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J. T., & Williams, S. T. (1994). Bergey’ s manual of determinative bacteriology (9th edn.). USA: Williams & Wilkins.Google Scholar
  17. Howard, B. J., Klaas, J. I. I., Rubin, S. J., Weissfeld, A. S., & Tilton, R. C. (1987). Clinical and pathogenic microbiology (968 pp.). St Louis: The, C, V. Mosby Company.Google Scholar
  18. Jaffal, A. A., Banat, I. M., El Mogheth, A. A., Nsanze, H., Bener, A., & Ameen, A. S. (1997). Residential indoor airborne microbial populations in the United Arab Emirates. Environment International, 23, 529–533. doi: 10.1016/S0160-4120(97)00055-X.CrossRefGoogle Scholar
  19. Kahan, E., Gross, S., & Cohen, H. A. (2005). Exclusion of ill children from child-care centers in Israel. Patient Education and Counseling, 56, 93–97. doi: 10.1016/j.pec.2003.12.012.CrossRefGoogle Scholar
  20. Kalogerakis, N., Paschali, D., Lekaditis, V., Pantidou, A., Eleftheriadis, K., & Lazaridis, M. (2005). Indoor air quality-bioaerosol measurements in domestic and office premises. Aerosol Science, 36, 751–761. doi: 10.1016/j.jaerosci.2005.02.004.CrossRefGoogle Scholar
  21. Kim, K. Y., & Kim, C. N. (2007). Airborne microbiological characteristics in public buildings of Korea. Building and Environment, 42, 2188–2196. doi: 10.1016/j.buildenv.2006.04.013.CrossRefGoogle Scholar
  22. Koneman, E. W., Allen, S. D., Janda, W. M., Schreckenberger, P. C., & Winn, W. C. (1997). Color atlas and textbook of diagnostic microbiology (1395 pp., 5th edn.) Philadelphia, New York: Lippincott.Google Scholar
  23. Koskinen, O. M., Husmana, T. M., Hyvarinen, A. M., Reponen, T. A., & Nevalainen, A. I. (1997). Two moldy day-care centers: A follow-up study of respiratory symptoms and infections. lndoor Air, 7, 262–268.CrossRefGoogle Scholar
  24. Law, A. K. Y., Chau, C. K., & Chan, G. Y. S. (2001). Characteristics of bioaerosol profile in office buildings in Hong Kong. Building and Environment, 36, 527–541. doi: 10.1016/S0360-1323(00)00020-2.CrossRefGoogle Scholar
  25. Lee, W. K., & Young, B. W. Y. (2006). Infectious diseases in children admitted from a residential child care centre. Hong Kong Medical Journal, 12, 119–124.Google Scholar
  26. Mahdy, H. M., & El-Sehrawi, M. H. (1997). Airborne bacteria in the atmosphere of El-Taif region Saudi Arabia. Water, Air, and Soil Pollution, 98, 317–324.Google Scholar
  27. Masuda, K., Masuda, R., Nishi, J. I., Tokuda, K., Yoshinaga, M., & Miyata, K. (2002). Incidences of nasopharyngeal colonization of respiratory bacterial pathogens in Japanese children attending day-care centers. Pediatrics International, 44, 376–380. doi: 10.1046/j.1442-200X.2002.01587.x.CrossRefGoogle Scholar
  28. Mui, K. W., Wong, L. T., & Hui, P. S. (2008). Risks of unsatisfactory airborne bacteria level in air-conditioned offices of subtropical climates. Building and Environment, 43, 475–479. doi: 10.1016/j.buildenv.2007.01.012.CrossRefGoogle Scholar
  29. Murray, P. R., Baron, E. J., Jorgensen, J. H., Pfaller, M. A., & Yolken, R. H. (2003). Manual of clinical microbiology (8th edn.). Washington, D.C.: ASM Pres.Google Scholar
  30. Nafstad, P., Jaakkola, J. J. K., Skrondal, A., & Magnus, P. (2004). Day care center characteristics and children’s respiratory health. Indoor Air, 15, 69–75. doi: 10.1111/j.1600-0668.2004.00310.x.CrossRefGoogle Scholar
  31. Nevalainen, A., & Seuri, M. (2005). Of microbes and men. Indoor Air, 15, 58–64. doi: 10.1111/j.1600-0668.2005.00344.x.CrossRefGoogle Scholar
  32. Nilsson, A., Kihlstr, E., Lagesson, V., Wess, B., Szponar, B., Larsson, L., et al. (2004). Microorganisms and volatile organic compounds in airborne dust from damp residences. Indoor Air, 14, 74–82. doi: 10.1046/j.1600-0668.2003.00178.x.CrossRefGoogle Scholar
  33. Pastuszka, J. S., Paw, U. K. T., Lis, D. O., Wlazlo, A., & Ulfig, K. (2000). Bacterial and fungal aerosol in indoor environment in Upper Silesia, Poland. Atmospheric Environment, 34, 3833–3842. doi: 10.1016/S1352-2310(99)00527-0.CrossRefGoogle Scholar
  34. Pönkä, A., Poussa, T., & Laosmaa, M. (2004). The effect of enhanced hygiene practices on absences due to infectious diseases among children in day care centers in Helsinki. Infection, 32, 2–7. doi: 10.1007/s15010-004-3036-x.CrossRefGoogle Scholar
  35. Prospero, J. M., Blades, E., Mathison, G., & Naidu, R. (2005). Interhemispheric transport of viable fungi and bacteria from Africa to the Caribbean with soil dust. Aerobiologia, 21, 1–19. doi: 10.1007/s10453-004-5872-7.CrossRefGoogle Scholar
  36. Salonen, H., Lappalainen, S., Lindroos, O., Harju, V., & Reijula, K. (2007). Fungi and bacteria in mould-damaged and non-damaged Office environments in a subarctic climate. Atmospheric Environment, 41, 6797–6807. doi: 10.1016/j.atmosenv.2007.04.043.CrossRefGoogle Scholar
  37. Sarica, S., Asan, A., Otkun, M. T., & Ture, M. (2002). Monitoring indoor airborne fungi and bacteria in the different parts of Trakya University Hospital (Edirne-Turkey). Indoor and Built Environment, 11, 285–292. doi: 10.1177/1420326X0201100505.CrossRefGoogle Scholar
  38. Seino, K., Takano, T., Nakamura, K., & Watanabe, M. (2005). An evidential example of airborne bacteria in a crowded, underground public concourse in Tokyo. Atmospheric Environment, 39, 337–341. doi: 10.1016/j.atmosenv.2004.09.030.CrossRefGoogle Scholar
  39. Shaffer, B. T., & Lighthart, B. (1997). Survey of airborne bacteria at four diverse locations in Oregon: Urban, rural, forest, and coastal. Microbial Ecology, 34, 167–177. doi: 10.1007/s002489900046.CrossRefGoogle Scholar
  40. Shahamat, M., Levin, M., Rahman, I., Grim, C., Heidelberg, J., Stelma, G., et al. (1997). Evaluation of media for recovery of aerosolized bacteria. Aerobiologia, 13, 219–226. doi: 10.1007/BF02694489.CrossRefGoogle Scholar
  41. Thacker, S. B., Addiss, D. G., Goodman, R. A., Holloway, B. R., & Spencer, H. C. (1992). Infectious-diseases and injuries in child day-care—opportunities for healthier children. Jama-Journal of the American Medical Association, 268, 1720–1726. doi: 10.1001/jama.268.13.1720.CrossRefGoogle Scholar
  42. Tong, Y., & Lighthart, B. (2000). The annual bacterial particle concentration and size distribution in the ambient atmosphere in a rural area of the Willamette Valley, Oregon. Aerosol Science and Technology, 32, 393–403. doi: 10.1080/027868200303533.CrossRefGoogle Scholar
  43. Yalcin, S. S., Tugrul, B., Cetinkaya, S., Cakir, B., & Yilmaz, A. (2004). Effect of total attending period on infection episode rate in a child-care center. Pediatrics International, 46, 555–560. doi: 10.1111/j.1442-200x.2004.01950.x.CrossRefGoogle Scholar
  44. Zhu, H., Phelan, P. E., Duan, T., Raupp, G. B., Fernando, H. J. S., & Che, F. (2003). Experimental study of indoor and outdoor airborne bacterial concentrations in Tempe, Arizona, USA. Aerobiologia, 19, 201–211. doi: 10.1023/B:AERO.0000006571.23160.8a.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Halide Aydogdu
    • 1
  • Ahmet Asan
    • 2
    Email author
  • Muserref Tatman Otkun
    • 3
  1. 1.Food Technology ProgrammeTrakya University Arda Vocational CollegeEdirneTurkey
  2. 2.Department of BiologyTrakya University Faculty of Arts and SciencesEdirneTurkey
  3. 3.Faculty of Medicine, Department of MicrobiologyCanakkale Onsekiz Mart UniversityCanakkaleTurkey

Personalised recommendations