Environmental Monitoring and Assessment

, Volume 163, Issue 1–4, pp 591–598 | Cite as

Effect of combustion variables on PAHs emission from incineration of cellulose waste filters from acrylic industry

Article

Abstract

Incineration of cellulose waste filter from acrylic industry showed the presence of 13–16 polycyclic aromatic hydrocarbons (PAHs) from the list of 16 priority pollutants with an airflow rate of 1, 2, 3, and 4 L min − 1 in laboratory scale quartz tube vertical incinerator at 700–1,000°C at an interval of 100°C. The amount of total 16 PAHs increases with the increase in temperature with airflow rate of 1 L min − 1 and was found to be 9.4 times at 1,000°C than at 700°C. Studies at 800–1,000°C showed the decrease in total 16 PAHs with increase in airflow rate from 1 to 2 L min − 1. The amount of total 16 PAHs increases at 700, 800, and 1,000°C with increase in airflow rate from 2–4 L min − 1. At 900°C, amount of 16 PAHs decreases with increase in flow rate from 1 to 3 and increases at 4 L min − 1. The lesser amount of 2A PAHs was found at 700–900°C with airflow rates of 1–3 L min − 1, while less amount of 2B PAHs was found at 700°C and 800°C (with airflow rate of 1–2 L min − 1), at 900°C (with airflow rate of 1–3 L min − 1) and at 1,000°C (with airflow rate of 3 L min − 1). However, the sum total of 2A and 2B PAHs were found to be less at 700–900°C with airflow rate of 1–2 L min − 1.

Keywords

Acrylic waste Airflow rate Incinerator Carcinogenic Polycyclic aromatic hydrocarbons 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aracil, I., Font, R., & Conesa, J. A. (2005). Semivolatile and volatile compounds from the pyrolysis and combustion of polyvinyl chloride. Journal of Analytical and Applied Pyrolysis, 74, 465–478. doi:10.1016/j.jaap.2004.09.008.CrossRefGoogle Scholar
  2. Barbella, R., Bertoli, C., Ciajolo, A., & D’Anna, A. (1990). Behavior of a fuel-oil during the combustion cycle of a direct injection diesel-engine. Combustion and Flame, 82, 191–198. doi:10.1016/0010-2180(90)90097-B.CrossRefGoogle Scholar
  3. Bjorseth, A., & Ramdahl, T. (1985). Emission sources and recent progress in analytical chemistry. Handbook of PAH 2. New York: Marcel Dekker.Google Scholar
  4. Bonfanti, L., De-Michelle, G., Riccardi, J., & Lopez-Doriga, E. (1994). Influence of coal type and operating conditions on the formation of incomplete combustion products—pilot plant experiments. Combustion Science and Technology, 101, 505–525. doi:10.1080/00102209408951890.CrossRefGoogle Scholar
  5. Hawley-Fedder, R. A., Parsons, M. L., & Karasek, F. W. (1984). Products obtained during combustion of polymers under simulated incinerator conditions: III. PVC. Journal of Chromatography A, 315, 211–221. doi:10.1016/S0021-9673(01)90738-1.CrossRefGoogle Scholar
  6. IARC (1983). Evaluation of carcinogenic risk of chemicals to humans polycyclic aromatic compounds, Part 1, chemical, environmental and experimental data Monograph No 32. Lyon: IARC.Google Scholar
  7. IARC (1987). Evaluation of carcinogenic risk to humans. Overall evaluations of carcinogenicity. An updating of IARC monographs (Vols. 1–42). Supplement 7. Lyon: IARC.Google Scholar
  8. IARC (2002). Toxics Release Inventory (TRI) de minimis level for naphthalene monographs (Vol. 82). Lyon: IARC.Google Scholar
  9. IRDEFC (2006). Ideal reactor design equations and formulas calculator http://www.ajdesigner.com/phpreactor/reactor_equations_mean_residencetime.php.
  10. Kim, K.-S., Hong, K.-H., Ko, Y.-H., & Kim, M.-G. (2004). Emission characteristics of PCDD/Fs, PCBs, chlorobenzenes, chlorophenols, and PAHs from PVC combustion at various temperatures. Journal of the Air & Waste Management Association, 54, 555–562.Google Scholar
  11. Levendis, Y. A., Atal, A., Carlson, J. B., & Quintana, M. M. E. (2001). PAH and soot emissions from burning components of medical waste: examination/surgical gloves and cotton pads. Chemosphere, 42, 775–783. doi:10.1016/S0045-6535(00)00251-4.CrossRefGoogle Scholar
  12. Mastral, A. M., Callen, M. S., & Murillo, R. (1996). Assessment of PAH emissions as a function of coal combustion variables. Fuel, 75, 1533–1536. doi:10.1016/0016-2361(96)00120-2.CrossRefGoogle Scholar
  13. Mastral, A. M., Callen, M. S., Murillo, R., & Garcia, T. (1999). Organic atmospheric pollutants: Polycyclic hydrocarbons from coal atmospheric fluidised bed combustion (AFBC). Globle Nest: International Journal (Toronto, Ont.), 1, 111–119.Google Scholar
  14. NTP (2004). Eleventh report on carcinogens. U.S. Department of Health and Human Services, Public Health Service, National Toxicology Program.Google Scholar
  15. Ortiz, G. (2002). Molecular modeling of polycyclic aromatic hydrocarbons partitioning between water and soot. http://forms.gradsch.psu.edu/equity/sroppapers/2002/OrtizGrisselle.pdf.
  16. Panagiotou, T., Levendis, Y. A., Carlson, J., Dunayevskiy, Y. M., & Vouros, P. (1996). Aromatic hydrocarbon emissions from burning poly(styrene), poly(ethylene) and PVC particles at high temperatures. Combustion Science and Technology, 91, 116–117.Google Scholar
  17. Richter, H., & Howard, J. B. (2000). Formation of polycyclic aromatic hydrocarbons and their growth to soot-a review of chemical reaction pathways. Progress in Energy and Combustion Science, 26, 565–608. doi:10.1016/S0360-1285(00)00009-5.CrossRefGoogle Scholar
  18. Saxena, S. C., & Jotshi, C. K. (1996). Management and combustion of hazardous wastes. Progress in Energy and Combustion Science, 22, 401–425. doi:10.1016/S0360-1285(96)00007-X.CrossRefGoogle Scholar
  19. Singh, S., & Prakash, V. (2007). The effect of temperature on PAHs emission from incineration of acrylic waste. Environmental Monitoring and Assessment, 127, 73–77. doi:10.1007/s10661-006-9260-3.CrossRefGoogle Scholar
  20. US-EPA (1997). Code of federal regulation, title 40, part 60, subparts D, Da, Db, Dc (p 44). Washington, D.C.: USEPA.Google Scholar
  21. Wang, J., Richter, H., Howard, J. B., Levendis, Y. A., & Carlson, J. (2002). Polynuclear aromatic hydrocarbon and particulate emissions from two-stage combustion of polystyrene: The effects of the secondary furnace (afterburner). Temperature and soot filtration. Environmental Science & Technology, 36, 797–808.CrossRefGoogle Scholar
  22. Wang, Z., Wang, J., Richter, H., Howard, J. B., Carlson, J., & Levendis, Y. A. (2003). Comparative study on polycyclic aromatic hydrocarbons, light hydrocarbons, carbon monoxide, and particulate emissions from the combustion of polyethylene, polystyrene, and PVC. Energy & Fuels, 17, 999–1013. doi:10.1021/ef020269z.CrossRefGoogle Scholar
  23. Williams, P. T., Andrews, G. E., & Bartle, K. D. (1986). The relation between polycyclic aromatic compounds in diesel fuels and exhaust particulates. Fuel, 65, 1150–1158. doi:10.1016/0016-2361(86)90184-5.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of ChemistryMaharishi Markandeshwar UniversityHaryanaIndia
  2. 2.School of Chemistry & BiochemistryThapar UniversityPunjabIndia

Personalised recommendations