Environmental Monitoring and Assessment

, Volume 163, Issue 1–4, pp 515–529 | Cite as

Urban daytime traffic noise prediction models

  • Elaine Carvalho da Paz
  • Paulo Henrique Trombetta Zannin
Article

Abstract

An evaluation was made of the acoustic environment generated by an urban highway using in situ measurements. Based on the data collected, a mathematical model was designed for the main sound levels (Leq, L10, L50, and L90) as a function of the correlation between sound levels and between the equivalent sound pressure level and traffic variables. Four valid groups of mathematical models were generated to calculate daytime sound levels, which were statistically validated. It was found that the new models can be considered as accurate as other models presented in the literature to assess and predict daytime traffic noise, and that they stand out and differ from the existing models described in the literature thanks to two characteristics, namely, their linearity and the application of class intervals.

Keywords

Traffic noise Prediction models Urban noise Noise pollution Environmental noise pollution 

References

  1. Alves Filho, J. M. (1997). Influence of traffic composition on the noise generated on highways (Influência da composição do Tráfego sobre o Ruído gerado por Rodovias), Florianópolis. Master’s dissertation in Mechanical Engineering, Federal University of Santa Catarina.Google Scholar
  2. Alves Filho, J. M., Lenzi, A., & Zannin, P. H. T. (2004). Effects of traffic composition on road noise: a case study. Transportation Research Part D Transport and Environment, 9(1), 75–80. doi:10.1016/j.trd.2003.08.001.CrossRefGoogle Scholar
  3. Brown, A. L. (1994). Exposure of the Australian population to road traffic noise. Applied Acoustics, 43, 169–176. doi:10.1016/0003-682X(94)90060-4.CrossRefGoogle Scholar
  4. Burns, W. (1973). Noise and man. London: William Clowes.Google Scholar
  5. Calixto, A. (2002). Vehicle traffic noise on highways and major avenues situated within the urban perimeter of Curitiba, analyzed from the standpoint of acoustic parameters and their environmental impact (O Ruído gerado pelo Tráfego de Veículos em “Rodovias-Grandes Avenidas”, situadas dentro do perímetro urbano de Curitiba, analisados sobre parâmetros acústicos objetivos e seu impacto ambiental), Curitiba. Master’s dissertation in Mechanical Engineering, Federal University of Paraná.Google Scholar
  6. Calixto, A., Diniz, F. B., & Zannin, P. H. T. (2003). The statistical modeling of road traffic noise in an urban setting. Cities (London, England), 20(1), 23–29. doi:10.1016/S0264-2751(02)00093-8.
  7. Cvetkovic, D., Prascevic, M., Stojanovic, V., & Mihajlov, D. (1998). Comparative analysis of traffic noise prediction models (pp. 349–357). 5th congress of the Slovenian acoustical society, Solovenian.Google Scholar
  8. Dantas, G. H. G. (1996). Paving manual (Manual de Pavimentação). Rio de Janeiro: DNER.Google Scholar
  9. Der Bundesminister Für Verkehr - DBV (1990). RLS/90: Richtlinien für den Lärmschutz an Straβen (Guidelines for the control of highway noise). Bonn: German Code.Google Scholar
  10. García, A., & Faus, L. J. (1991). Statistical analysis of noise levels in urban areas. Applied Acoustics, 3(91), 227–247. doi:10.1016/0003-682X(91)90007-2.CrossRefGoogle Scholar
  11. Gerges, S. N. Y. (2004). Noise in large cities in Brazil. The Journal of the Acoustical Society of America, 115(5), 2592–2593.Google Scholar
  12. Golebiewski, R., Makarewick, R., Nowak, M., & Preis, A. (2003). Traffic noise reduction due to the porous road surface. Applied Acoustics, 64, 481–494. doi:10.1016/S0003-682X(02)00124-X.CrossRefGoogle Scholar
  13. Johnson, D. R., & Sanders, G. (1968). The evaluation of noise from freely flowing road traffic. Journal of Sound and Vibration, 7(2), 287–309. doi:10.1016/0022-460X(68)90273-3.CrossRefGoogle Scholar
  14. Krüger, E. L., & Zannin, P. H. T. (2004). Acoustic, thermal and luminous comfort in classrooms. Building and Environment, 39, 1055–1063. doi:10.1016/j.buildenv.2004.01.030.CrossRefGoogle Scholar
  15. Maschke, C. (1999). Preventive medical limits for chronic traffic noise exposure. Acustica, Germany, 85, 448–461.Google Scholar
  16. Paz, E. C. (2004). Study of an acoustic evaluation and prediction model for traffic noise (Estudo de um Modelo de Avaliação e Predição Acústica para o Ruído de Tráfego). Curitiba, Master’s dissertation in Civil Engineering, Federal University of Paraná.Google Scholar
  17. Paz, E. C., Ferreira, A. M. C., & Zannin, P. H. T. (2005). Comparative study of the perception of urban noise. Journal of Public Health, 39(3), 467–472. (Revista de Saúde Pública).Google Scholar
  18. Prascevic, M. R., Cvetkovic, D. S., Deljanin, A. S., & Stojanovic, V. O. (1997). Modeling of urban traffic noise (pp. 1–6). 5th International Congress on Sound and Vibration, Australia.Google Scholar
  19. Sandberg, U. (1987). Road traffic noise—the influence of the road surface and its characterization. Applied Acoustics, 21, 97–118. doi:10.1016/0003-682X(87)90004-1.CrossRefGoogle Scholar
  20. Sattler, M. A. (1999). Urban noise survey for the city of Porto Alegre, Brazil (pp. 1–6). 137th Meeting of the Acoustical Society of America—Acoustics Forum, Berlim.Google Scholar
  21. Tang, S. K., & Tong, K. K. (2004). Estimating traffic noise for inclined roads with freely flowing traffic. Applied Acoustics, 65, 171–181. doi:10.1016/j.apacoust.2003.08.001.CrossRefGoogle Scholar
  22. To, W. M., Rodney, C., & Ip, W. (2002). A multiple regression model for urban traffic noise in Hong Kong. The Journal of the Acoustical Society of America, 112(2), 551–556. doi:10.1121/1.1494803.CrossRefGoogle Scholar
  23. Verband Der Automobilindustrie, E. V. - VDA (1978). Urban traffic and noise. Frankfurt: VDA.Google Scholar
  24. Zannin, P. H. T. (2006). Occupational noise in urban buses. International Journal of Industrial Ergonomics, 36, 901–905. doi:10.1016/j.ergon.2006.06.010.CrossRefGoogle Scholar
  25. Zannin, P. H. T. (2008). Occupational noise in urban buses (Reprinted from International Journal of Industrial Ergonomics, vol 36, pp 901–905). International Journal of Industrial Ergonomics, 38, 232–237. doi:10.1016/j.ergon.2006.06.014.CrossRefGoogle Scholar
  26. Zannin, P. H. T., Diniz, F. B., & Barbosa, W. (2002). Environmental noise pollution in the city of Curitiba, Brazil. Applied Acoustics, 63(4), 351–358. doi:10.1016/S0003-682X(01)00052-4.CrossRefGoogle Scholar
  27. Zannin, P. H. T., Diniz, F. B., Barbosa, W., & Calixto, A. (2001). Environmental noise pollution in residential areas of the city of Curitiba. ACTA Acustica, 87, 625–628.Google Scholar
  28. Zannin, P. H. T., Diniz, F. B., Giovanini, C., & Ferreira, J. A. C. (2003). Interior noise profiles of buses in Curitiba. Transportation Research Part D—Transport and Environment, 8, 243–247.Google Scholar
  29. Zannin, P. H. T., Ferreira, A. C. M., & Szeremeta, B. (2006). Evaluation of noise pollution in urban parks. Environmental Monitoring and Assessment, 118, 423–433. doi:10.1007/s10661-006-1506-6.CrossRefGoogle Scholar
  30. Zannin, P. H. T., & Marcon, C. R. (2007). Objective and subjective evaluation of the acoustical comfort in classrooms. Applied Ergonomics, 38, 675–680. doi:10.1016/j.apergo.2006.10.001.CrossRefGoogle Scholar
  31. Zannin, P. H. T., & Zwirtes, D. P. Z. (2009). Evaluation of the acoustic performance of classrooms in public schools. Applied Acoustics, 70, 626–635. doi:10.1016/j.apacoust.2008.06.007.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Elaine Carvalho da Paz
    • 1
  • Paulo Henrique Trombetta Zannin
    • 2
  1. 1.Laboratory of Environmental and Industrial Acoustics and Acoustic Comfort - LAAICAUFPR - Federal University of Paraná, LAAICA/UFPRCuritibaBrazil
  2. 2.Laboratory of Environmental and Industrial Acoustics and Acoustic Comfort - LAAICA, Department of Mechanical EngineeringUFPR - Federal University of Paraná, LAAICA/UFPRCuritibaBrazil

Personalised recommendations