Environmental Monitoring and Assessment

, Volume 163, Issue 1–4, pp 433–448 | Cite as

Mercury contamination in three species of anuran amphibians from the Cache Creek Watershed, California, USA

  • Roger L. HothemEmail author
  • Mark R. Jennings
  • John J. Crayon


Fish and wildlife may bioaccumulate mercury (Hg) to levels that adversely affect reproduction, growth, and survival. Sources of Hg within the Cache Creek Watershed in northern California have been identified, and concentrations of Hg in invertebrates and fish have been documented. However, bioaccumulation of Hg by amphibians has not been evaluated. In this study, adult and juvenile American bullfrogs (Lithobates catesbeianus) and foothill yellow-legged frogs (Rana boylii), adult Northern Pacific treefrogs (Pseudacris regilla), and larval bullfrogs were collected and analyzed for total Hg. One or more species of amphibians from 40% of the 35 sites had mean Hg concentrations greater than the US Environmental Protection Agency’s tissue residue criterion for fish (0.3 μg/g). Of the bullfrog tissues analyzed, the liver had the highest concentrations of both total Hg and methyl mercury. Total Hg in carcasses of bullfrogs was highly correlated with total Hg in leg muscle, the tissue most often consumed by humans.


Amphibians Bioaccumulation American bullfrog Cache Creek California Foothill yellow-legged frog Lithobates catesbeianus Mercury Northern Pacific treefrog Pseudacris regilla Rana boylii 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. American Society of Ichthyologists and Herpetologists (ASIH), The Herpetologists’ League (HL), and Society for the Study of Amphibians and Reptiles (SSAR) (1987). Guidelines for use of live amphibians and reptiles in field research. Published jointly by the three societies.Google Scholar
  2. Blaustein, A. R., Wake, D. B., & Sousa, W. P. (1994). Amphibian declines: Judging stability, persistence, and susceptibility of populations to local and global extinctions. Conservation Biology, 8, 60–71. doi: 10.1046/j.1523-1739.1994.08010060.x.CrossRefGoogle Scholar
  3. Bloom, N. S. (1992). On the chemical form of mercury in edible fish and marine invertebrate tissue. Canadian Journal of Fisheries and Aquatic Sciences, 49, 1010–1017.CrossRefGoogle Scholar
  4. Byrne, A. R., Kosta, L., & Stegnar, P. (1975). The occurrence of mercury in amphibia. Environmental Letters, 8, 147–155.CrossRefGoogle Scholar
  5. California Department of Fish and Game (2003). 2003 Freshwater sport fishing regulations. Sacramento, CA.Google Scholar
  6. Central Valley Regional Water Quality Control Board (2003). 2003 CWA section 303(d) list of water quality limited segment., 23 pp.
  7. Chang, L. W., Reuhl, K. R., & Dudley, A. W., Jr. (1974). Effects of methylmercury chloride on Rana pipiens tadpoles. Environmental Research, 8, 82–91.CrossRefGoogle Scholar
  8. Cooke, A. S. (1981). Tadpoles as indicators of harmful levels of pollution in the field. Environmental Pollution (Serial A), 25, 123–133.CrossRefGoogle Scholar
  9. Cory, L., Fjeld, P., & Serat, W. (1970). Distribution patterns of DDT residues in the Sierra Nevada Mountains. Pesticides Monitoring Journal, 3, 204–211.Google Scholar
  10. Davidson, C., Shaffer, H. B., & Jennings, M. R. (2001). Declines of the California red-legged frog: Climate, UV-B, habitat, and pesticides hypotheses. Ecological Applications, 11, 464–479.CrossRefGoogle Scholar
  11. Davidson, C., Shaffer, H. B., & Jennings, M. R. (2002). Spatial tests of the pesticide drift, habitat destruction, UV-B, and climate change hypotheses for California amphibian declines. Conservation Biology, 16, 1588–1601. doi: 10.1046/j.1523-1739.2002.01030.x.CrossRefGoogle Scholar
  12. Dial, N. A. (1976). Methylmercury: Teratogenic and lethal effects in frog embryos. Teratology, 13, 327–334.CrossRefGoogle Scholar
  13. Domagalski, J. (2001). Mercury and methylmercury in water and sediment of the Sacramento River Basin, California. Applied Geochemistry, 16, 1677–1691. doi: 10.1016/S0883-2927(01)00068-3.CrossRefGoogle Scholar
  14. Domagalski, J. L., Alpers, C. N., Slotton, D. G., Suchanek, T. H., & Ayers, S. M. (2004). Mercury and methylmercury concentrations and loads in the Cache Creek watershed, California. The Science of the Total Environment, 327, 215–237. doi: 10.1016/j.scitotenv.2004.01.013.CrossRefGoogle Scholar
  15. Dustman, E. H., Stickel, L. F., & Elder, J. B. (1972). Mercury in wild animals, Lake St. Clair, 1970. In R. Hartung & B. D. Dinman (Eds.), Environmental mercury contamination (pp. 46–52). Ann Arbor: Ann Arbor Science Publishers.Google Scholar
  16. Fisher, R. N., & Shaffer, H. B. (1996). The decline of amphibians in California’s great Central Valley. Conservation Biology, 10, 1387–1397. doi: 10.1046/j.1523-1739.1996.10051387.x.CrossRefGoogle Scholar
  17. Foe, C. G., & Croyle, B. (1998). Mercury concentration and loads from the Sacramento River and from Cache Creek to the Sacramento–San Joaquin Delta Estuary. Staff report, California Regional Water Quality Control Board, Central Valley Region, Sacramento, CA, 81 pp. +2 Appendices.Google Scholar
  18. Gerstenberger, S., & Pearson, R. (2002). Mercury concentrations in bullfrogs (Rana catesbeiana) collected from a southern Nevada, USA, wetland. Bulletin of Environmental Contamination and Toxicology, 69, 210–218.CrossRefGoogle Scholar
  19. Hayes, M. P., & Jennings, M. R. (1986). Decline of ranid frog species in western North America: Are bullfrogs (Rana catesbeiana) responsible? Journal of Herpetology, 20, 490–509.CrossRefGoogle Scholar
  20. Hothem, R. L., Meckstroth, A. M., Wegner, K. E., Jennings, M. R., & Crayon, J. J. (2009). Diets of three species of Anurans from the Cache Creek Watershed, California, USA. Journal of Herpetology, 43, 275-283.CrossRefGoogle Scholar
  21. Hothem, R. L., Trejo, B. S., Bauer, M. L., & Crayon, J. J. (2008). Cliff swallows Petrochelidon pyrrhonota as bioindicators of environmental mercury, Cache Creek Watershed, California. Archives of Environmental Contamination and Toxicology, 55, 111–121.CrossRefGoogle Scholar
  22. Jayaprakash, R. I., & Madhyastha, M. N. (1987). Toxicities of some heavy metals to the tadpoles of the frog, Microhyla ornata (Dumeril & Bibron). Toxicology Letters, 36, 205–208.CrossRefGoogle Scholar
  23. Jennings, M. R. (1988). Natural history and decline of native ranids in California. In H. F. DeLisle, P. R. Brown, B. Kaufman, & B. M. McGurty (Eds.), Proceedings of the conference on California herpetology (pp. 61–72). Southwestern Herpetologists Society, Special Publication (4).Google Scholar
  24. Jennings, M. R. (1995). Native ranid frogs in California. In E. T. LaRoe, G. S. Farris, C. E. Puckett, P. D. Doran, & M. J. Mac (Eds.), Our living resources: A report to the nation on the distribution, abundance, and health of U.S. plants, animals, and ecosystems (pp. 131–134). Washington, DC: US Department of the Interior, National Biological Service.Google Scholar
  25. Jennings, M. R., & Hayes, M. P. (1994). Amphibian and reptile species of special concern in California. California Department of Fish and Game, Inland Fisheries Division, Rancho Cordova, CA.Google Scholar
  26. Punzo, F. (1993). Effect of mercuric chloride on fertilization and larval development in the River frog, Rana heckscheri (Wright) (Anura: Ranidae). Bulletin of Environmental Contamination and Toxicology, 51, 575–581.CrossRefGoogle Scholar
  27. Rytuba, J. J. (2000). Mercury mine drainage and processes that control its environmental impact. The Science of the Total Environment, 260, 57–71. doi: 10.1016/S0048-9697(00)00541-6.CrossRefGoogle Scholar
  28. Skelly, D. K., & Golon, J. (2003). Assimilation of natural benthic substrates by two species of tadpoles. Herpetologica, 59, 37–42. doi: 10.1655/0018-0831(2003)059[0037:AONBSB]2.0.CO;2.CrossRefGoogle Scholar
  29. Slotton, D. G., Reuter, J. E., & Goldman, C. R. (1995). Mercury uptake patterns of biota in a seasonally anoxic northern California reservoir. Water Air and Soil Pollution, 80, 841–850. doi: 10.1007/BF01189735.CrossRefGoogle Scholar
  30. Slotton, D. G., Ayers, S. M., Reuter, J. E., & Goldman, C. R. (1997). Cache Creek Watershed preliminary mercury assessment, using benthic macro-invertebrates. Final report for the Central Valley Regional Water Quality Control Board and the National Science Foundation, June 1997.Google Scholar
  31. Sparling, D. W., Fellers, G. M., & McConnell, L. L. (2001). Pesticides and amphibian population declines in California, USA. Environmental Toxicology and Chemistry, 20, 1591–1595.CrossRefGoogle Scholar
  32. Terhivuo, J., Lodenius, M., Nuorteve, P., & Tulisalo, E. (1984). Mercury content of common frogs (Rana temporaria L.) and common toads (Bufo bufo L.) collected in southern Finland. Annales Zoologici Fennici, 21, 41–44.Google Scholar
  33. Ugarte, C. A., Rice, K. G., & Donnelly, M. A. (2005). Variation of total mercury concentrations in pig frogs (Rana grylio) across the Florida Everglades, USA. The Science of the Total Environment, 345, 51–59. doi: 10.1016/j.scitotenv.2004.10.015.CrossRefGoogle Scholar
  34. Unrine, J. M., Jagoe, C. H., Hopkins, W. A., & Brant, H. A. (2004). Adverse effects of ecologically relevant dietary mercury exposure in southern leopard frog (Rana sphenocephala) larvae. Environmental Toxicology and Chemistry, 23, 2964–2970.CrossRefGoogle Scholar
  35. Unrine, J. M., Hopkins, W. A., Romanek, C. S., & Jackson, B. P. (2007). Bioaccumulation of trace elements in omnivorous amphibian larvae: Implications for amphibian health and contaminant transport. Environmental Pollution, 149, 182–192.CrossRefGoogle Scholar
  36. Uthe, J. F., Solomon, J., & Grift, B. (1972). Rapid semimicro method for the determination of methylmercury in fish tissue. Journal of the Association of Official Analytical Chemists, 55, 583–589.Google Scholar
  37. Wolfe, M. E., Schwarzbach, S. E. & Sulaiman, R. A (1998). Effects of mercury on wildlife: A comprehensive review. Environmental Toxicology and Chemistry, 17, 146–160. doi: 10.1897/1551-5028(1998)017<0146:EOMOWA>2.3CO;2.CrossRefGoogle Scholar
  38. Zillioux, E. J., Porcella, D. B. & Benoit, J. M (1993). Mercury cycling and effects in freshwater wetland ecosystems. Environmental Toxicology and Chemistry, 12, 2245–2264. doi: 10.1897/1552-8618(1993)12[2245:MCAEIF]2.0.CO;2.CrossRefGoogle Scholar

Copyright information

© US Government 2009

Authors and Affiliations

  • Roger L. Hothem
    • 1
    Email author
  • Mark R. Jennings
    • 2
    • 3
    • 5
  • John J. Crayon
    • 4
    • 6
  1. 1.Western Ecological Research CenterUS Geological SurveyDixonUSA
  2. 2.US Geological SurveySan SimeonUSA
  3. 3.Department of HerpetologyCalifornia Academy of SciencesSan FranciscoUSA
  4. 4.Western Ecological Research CenterUS Geological SurveyDavisUSA
  5. 5.Rana ResourcesDavisUSA
  6. 6.California Department of Fish and GameBermuda DunesUSA

Personalised recommendations