Advertisement

Environmental Monitoring and Assessment

, Volume 163, Issue 1–4, pp 195–213 | Cite as

Heavy metal concentrations in the soft tissues of swan mussel (Anodonta cygnea) and surficial sediments from Anzali wetland, Iran

  • N. Pourang
  • C. A. Richardson
  • M. S. Mortazavi
Article

Abstract

Concentrations of cadmium, copper, and lead were determined in surficial sediments and the soft tissues (foot and gills) of swan mussel Anodonta cygnea from two sampling sites in Anzali wetland, which is an internationally important wetland registered in the Ramsar Convention. The metal contents in the mussel species from the studied region were comparable to other world areas. In most cases, the levels of the metals either fell within the range for other areas or were lower. There were significant differences between the tissues for the accumulation of Cd and Pb. Only in the case of Pb accumulation in gills significant differences between the specimens from the selected sampling sites could be observed. Age-related correlations were found in the case of Cu accumulation in foot and Cd levels in gills. No weight-dependent trend could be observed for the accumulation of the three elements. There was significant negative width-dependent relationship in the case of Cu. A significant negative correlation was also found between the maximum shell height and Cu accumulation in the gills. The only association among the elements in the selected soft tissues was found between Cd and Pb. Highly significant differences could be found between the sampling sites from the concentration of the elements in sediments point of view. The pattern of metal occurrence in the selected tissues and sediments exhibited the following descending order: Pb, Cu>Cd for gills, Cu>Pb, Cd for foot, and Cu>Pb>Cd for sediments. The mean concentrations of Cd and Pb in the sediments from the study area were higher than the global baseline values and world average shale. In the case of Cu, our results were somewhat higher than the baseline values but well below the world average shale.

Keywords

Heavy metals Anzali wetland Anodonta cygnea Soft tissues Sediments 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdolmaleki, S. (1994). An investigation on the bentic (sic) macrofauna of the Anzali Lagoon. Iranian Fisheries Scientific Bulletin, 5, 27–39.Google Scholar
  2. Abdullah, M. H., Sidi, J., & Aris, A. Z. (2007). Heavy metals (Cd, Cu, Cr, Pb and Zn) in meretrix meretrix roding, water and sediments from estuaries in Sabah, North Borneo. International Journal of Environmental & Science Education, 2(3), 69–74.Google Scholar
  3. Ackermann, F. (1980). A procedure for correcting the grain size effects in heavy metal analyses of estuarine and coastal sediments. Environmental Technology Letters, 1, 518–527. doi: 10.1080/09593338009384008.CrossRefGoogle Scholar
  4. Afraz, A. (1996). Classification of Anzali Lagoon rivers. Iranian Fisheries Scientific Journal, 5(1), 1–17.Google Scholar
  5. Airas, S. (2003). Trace metal concentrations in blue mussels Mytilus edulis (L.) in Byfjorden and the coastal areas of Bergen. M.Sc. thesis, Institute for Fisheries and Marine Biology, University of Bergen, 59 pp.Google Scholar
  6. Al-Darwish, H. A., Abd El-Gawad, E. A., Mohammed, F. H., & Lotfy, M. M. (2005). Assessment of contaminants in Dubai coastal region, United Arab Emirates. Environmental Geology, 49, 240–250. doi: 10.1007/s00254-005-0078-z.CrossRefGoogle Scholar
  7. Al-Sayed, H. A., Mahasneh, A. M., & Al-Saad, J. (1994). Variations of trace metal concentrations in seawater and pearl oyster Pinctada radiata from Bahrain (Persian Gulf). Marine Pollution Bulletin, 28, 370–374. doi: 10.1016/0025-326X(94)90274-7.CrossRefGoogle Scholar
  8. Angelo, R. T., Cringan, M. S., Chamberlain, D. L., Stahl, A. J., Haslouer, S. G., & Goodrich, C. A. (2007). Residual effects of lead and zinc mining on freshwater mussels in the Spring River Basin (Kansas, Missouri, and Oklahoma, USA). The Science of the Total Environment, 384, 467–496. doi: 10.1016/j.scitotenv.2007.05.045.CrossRefGoogle Scholar
  9. ANZECC/ARCMANZ (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality: volume 2—aquatic ecosystems—rationale and background information. Australian and New Zealand Environment and Conservation Council, Agriculture and Resource Management Council of Australia and New Zealand. http://www.mincos.gov.au/publications/australian_and_new_zealand_guidelines_for_fresh_and_marine_water_quality/ volume_2. Retrieved.
  10. Attrill, M. J., & Thomas, R. M. (1996). Heavy metal concentrations in sediment from the Thames estuary, U.K. Marine Pollution Bulletin, 30, 742–744. doi: 10.1016/0025-326X(95)98339-X.CrossRefGoogle Scholar
  11. Ayati, B. (2003). Investigation of sanitary and industrial wastewater effects on Anzali Reserved Wetland (final report). Report presented to MAB-UNESCO by Environmental Engineering Division, Civil Engineering Department, Tarbiat Modarres University, Tehran, pp. 52.Google Scholar
  12. Barlas, N., Akbulut, N., & Aydogan, M. (2005). Assessment of heavy metal residues in the sediment and water samples of Uluabat Lake, Turkey. Bulletin of Environmental Contamination and Toxicology, 74, 286–293. doi: 10.1007/s00128-004-0582-y.CrossRefGoogle Scholar
  13. Baršienė, J., Bučinskienė, R., & Jokšas, K. (2002). Cytogenetic damage and heavy metal bioaccumulation in molluscs inhabiting different sites of the Neris River. Ekologija, 2, 52–57.Google Scholar
  14. Barsyte Lovejoy, D. (1999). Heavy metal concentrations in water, sediments and mollusc tissues. Acta Zoologica Lituanica, 9(2), 12–20.Google Scholar
  15. Bebianno, M. J., & Machado, L. M. (1997). Concentrations of metals and metallothioneins in Mytilus galloprovincialis along the south coast of Portugal. Marine Pollution Bulletin, 34(8), 666–671. doi: 10.1016/S0025-326X(97)00036-2.CrossRefGoogle Scholar
  16. Besada, V., Fumega, J., & Vaamonde, A. (2002). Temporal trends of Cd, Cu, Hg, Pb and Zn in mussel (Mytilus galloprovincialis) from the Spanish North-Atlantic coast 1991–1999. The Science of the Total Environment, 288, 239–253. doi: 10.1016/S0048-9697(01)01010-5.CrossRefGoogle Scholar
  17. Betti, M., & Papoff, P. (1988). Trace elements: data and information in the characterization of an aqueous ecosystem. CRC Critical Reviews in Analytical Chemistry, 19(4), 271–322.Google Scholar
  18. Biksham, G., Subramanian, V., & Griken, R. (1991). Heavy metal distribution in the Godavari river basin. Environmental Geology and Water Sciences, 17, 117–126. doi: 10.1007/BF01701567.CrossRefGoogle Scholar
  19. Bilos, C., Colombo, J. C., & JoséRodriguez Presa, M. (1998). Trace metals in suspended particles, sediments and Asiatic clams (Corbicula fluminea) of the Río de la Plata Estuary, Argentina. Environmental Pollution, 99(1), 1–11. doi: 10.1016/S0269-7491(97)00177-2.CrossRefGoogle Scholar
  20. Bonneris, E., Perceval, O., Masson, S., Hare, L., & Campbell, P. G. C. (2005a). Sub-cellular partitioning of Cd, Cu and Zn in tissues of indigenous unionid bivalves living along a metal exposure gradient and links to metal-induced effects. Environmental Pollution, 135(2), 195–208. doi: 10.1016/j.envpol.2004.11.007.CrossRefGoogle Scholar
  21. Bonneris, E., Giguere, A., Perceval, O., Buronfosse, T., Masson, S., Hare, L., et al. (2005b). Sub-cellular partitioning of metals (Cd, Cu, Zn) in the gills of a freshwater bivalve, Pyganodon grandis: Role of calcium concretions in metal sequestration. Aquatic Toxicology (Amsterdam, Netherlands), 71, 319–334. doi: 10.1016/j.aquatox.2004.11.025.Google Scholar
  22. Bordin, G., McCourt, J., & Rodríguez, A. (1992). Trace metals in the marine bivalve Macoma balthica in the Westerschelde estuary (The Netherlands). Part 1: Analysis of total copper, cadmium, zinc and iron concentrations—locational and seasonal variations. The Science of the Total Environment, 127(3), 255–280. doi: 10.1016/0048-9697(92)90507-O.CrossRefGoogle Scholar
  23. Bou-Olayan, A. H., Al-Mattar, S., Al-Yakoob, S. A., & Al-Hazeem, S. (1995). Accumulation of lead, cadmium, copper and nickel by pearl oyster, Pinctada radiata, from Kuwait marine environment. Marine Pollution Bulletin, 30, 211–214. doi: 10.1016/0025-326X(94)00143-W.CrossRefGoogle Scholar
  24. Bowen, H. J. M. (1979). Environmental chemistry of the elements (pp. 333). London: Academic Press.Google Scholar
  25. Brix, H., & Lyngby, J. E. (1985). The influence of size upon the concentrations of Cd, Cr, Cu, Pb and Zn in the common mussel (Mytilus edulis L.). Symposia Biologia Hungarica, 29, 253–271.Google Scholar
  26. Buchman, M. F. (1999). NOAA Screening Quick Reference Table, NOAA HAZMAT Report 99-1, Seattle, WA, Coastal Protection and Restoration Division, National Oceanic and Atmospheric Administration. 12 pp.Google Scholar
  27. Cairns, J. J., & Pratt, J. R. (1995). A history of biological monitoring using benthic macroinvertebrates. In D. M. Rosenberg, & V. H. Resh (Eds), Freshwater biomonitoring and benthic macroinvertebrates (pp. 10–27). New York, NY: Chapman and Hall.Google Scholar
  28. Camusso, M., Balestrini, R., & Binelli, A. (2001). Use of zebra mussel (Dreissena polymorpha) to assess trace metal contamination in the largest Italian subalpine lakes. Chemosphere, 44, 263–270. doi:  10.1016/S0045-6535(00)00169-7.CrossRefGoogle Scholar
  29. Cauwet, C. (1987). Influence of sedimentological features on the distribution of trace metals in marine sediments. Marine Chemistry, 22, 221–234. doi: 10.1016/0304-4203(87)90010-7.CrossRefGoogle Scholar
  30. CCME (1999). Canadian sediment quality guidelines for the protection of aquatic life: Summary tables. In: Canadian environmental quality guidelines, Canadian Council of Ministers for the Environment (CCME), Winnipeg.Google Scholar
  31. Chafik, A., Cheggour, M., Cossa, D., & Sifeddine, S. B. M. (2001). Quality of Moroccan Atlantic coastal waters: Water monitoring and mussel watching. Aquatic Living Resources, 14(4), 239–249. doi: 10.1016/S0990-7440(01)01123-8.CrossRefGoogle Scholar
  32. Chavez-Crooker, P., Garrido, N., Pozo, P., & Ahearn, G. A. (2003). Copper transport by lobster (Homarus americanus) hepatopancreatic lysosomes. Comparative Biochemistry and Physiology, 135(2), 107–118.Google Scholar
  33. Cheung, K. C., Poon, B. H. T., Lan, C. Y., & Wong, M. H. (2003). Assessment of metal and nutrient concentrations in river water and sediment collected from the cities in the Pearl River Delta, South China. Chemosphere, 52, 1431–1440. doi: 10.1016/S0045-6535(03)00479-X.CrossRefGoogle Scholar
  34. Chong, K., & Wang, W.-X. (2001). Comparative studies on the biokinetics of Cd, Cr, and Zn in the green mussel Perna viridis and the Manila clam Ruditapes philippinarum. Environmental Pollution, 115(1), 107–121. doi: 10.1016/S0269-7491(01)00087-2.CrossRefGoogle Scholar
  35. Clark, G. M., & Maret, T. R. (1998). Organochlorine compounds and trace elements in fish tissue and bed sediments in the lower Snake River basin, Idaho and Oregon. Water resources investigations report 98-4103, US Geological Survey (USGS), pp. 35.Google Scholar
  36. Cohen, T., Hee, S. S. Q., & Ambrose, R. F. (2001). Trace metals in fish and invertebrates of three California coastal wetlands. Marine Pollution Bulletin, 42(3), 224–232. doi: 10.1016/S0025-326X(00)00146-6.CrossRefGoogle Scholar
  37. Daniel, W. W. (1977). Introductory statistics with applications (pp. 158). Boston: Houghton Mifflin.Google Scholar
  38. de Mora, S., Fowler, S. W., Wyse, E., & Azemard, S. (2004). Distribution of heavy metals in marine bivalves, fish and coastal sediments in the Gulf and Gulf of Oman. Marine Pollution Bulletin, 49, 410–424. doi: 10.1016/j.marpolbul.2004.02.029.CrossRefGoogle Scholar
  39. Dobrowolski, R., & Skowronska, M. (2001). Distribution and environmental mobility of selected trace metals in the Zemborzyce Reservoir. Polish Journal of Environmental Studies, 10(5), 383–388.Google Scholar
  40. Franco, J., Borja, Á., Solaun, O., & Pérez, V. (2002). Heavy metals in molluscs from the Basque Coast (Northern Spain): Results from an 11-year monitoring programme. Marine Pollution Bulletin, 44(9), 973–976. doi: 10.1016/S0025-326X(02)00122-4.CrossRefGoogle Scholar
  41. Frías-Espericueta, M. G., Osuna-López, J. I., López-Saenz, P. J., López-López, G., & Izaguirre-Fierro, G. (2004). Heavy metals in surface sediments from Huizache-Caimanero Lagoon, Northwest Coast of Mexico. Bulletin of Environmental Contamination and Toxicology, 73, 749–755. doi: 10.1007/s00128-004-0489-7.CrossRefGoogle Scholar
  42. Gagné, F., Blaise, C., Aoyama, I., Luo, R., Gagnon, C., & Couillard, Y. (2002). Biomarker study of a municipal effluent dispersion plume in two species of freshwater mussels. Environmental Toxicology, 17, 149–159. doi: 10.1002/tox.10046.CrossRefGoogle Scholar
  43. Gagnon, C., Gagné, F., Turcotte, P., Saulnier, I., Blaise, C., Salazar, M. H., et al. (2006). Exposure of caged mussels to metals in a primary-treated municipal wastewater plume. Chemosphere, 62(6), 998–1010. doi: 10.1016/j.chemosphere.2005.06.055.CrossRefGoogle Scholar
  44. George, S. G. (1983). Heavy metal detoxification in the mussel Mytilus edulis: An in vitro study of Cd and Zn binding in isolated tertiary lysosomes. Comparative Biochemistry and Physiology, 76, 53–57. doi: 10.1016/0742-8413(83)90043-9.CrossRefGoogle Scholar
  45. Gibbs, R. J. (1993). Metals of the bottom muds in Townsville harbor. Australia. Environmental Pollution, 81, 297–300. doi: 10.1016/0269-7491(93)90212-7.CrossRefGoogle Scholar
  46. Green, R. H. (1979). Sampling design and statistical methods for environmental biologists (pp. 257). USA: Wiley.Google Scholar
  47. Green-Ruiz, C., & Páez-Osuna, F. (2003). Heavy metal distribution in surface sediments from a subtropical coastal lagoon system associated with an agricultural basin. Bulletin of Environmental Contamination and Toxicology, 71(1), 52–59. doi: 10.1007/s00128-003-0130-1.CrossRefGoogle Scholar
  48. Grimwood, M. J. & Dixon, E. (1997). Assessment of risks posed by list II metals of sensitive marine areas (SMAs) and adequacy of existing environmental quality standards (EQSs) for SMA protection. Report to English Nature, 32 pp.Google Scholar
  49. Gundacker, C. (2000). Comparison of heavy metal bioaccumulation in freshwater mollusks of urban river habitats in Vienna. Environmental Pollution, 110, 61–71. doi: 10.1016/S0269-7491(99)00286-9.CrossRefGoogle Scholar
  50. Haque, A. M., Szymelfenig, M., & Węsławski, M. (1997). Spatial and seasonal changes in the sandy littoral zoobenthos of the Gulf of Gdańsk. Oceanologia, 39, 299–324.Google Scholar
  51. Juracic, M., Bauman, I., & Pavdic, V. (1980). Physico-chemical characterisation of recent sediments of the North Adriatic in relation to pollution problems. VIes Journées d’études sur les pollutions marines en Méditerranée CIESM, Cagliari, pp. 977–982.Google Scholar
  52. Juracic, M., Bauman, I., & Pavdic, V. (1982). Are sediments the ultimate depository of hydrocarbon pollutions? In VIes Journées d’études sur les pollutions marines en Méditerranée (pp. 83–87), Cannes.Google Scholar
  53. Kádár, E., Salánki, J., Powell, J., White, K. N., & McCrohan, C. R. (2002). Effect of sub-lethal concentrations of aluminium on the filtration activity of the freshwater mussel Anodonta cygnea L. at neutral pH. Acta Biologica Hungarica, 53, 485–493. doi: 10.1556/ABiol.53.2002.4.9.CrossRefGoogle Scholar
  54. Ketchum, B. H. (1980). Marine industrial pollution. In Sears, M. & Merriman, D. (Eds.), Oceanography, the past (pp. 397). New York: Springer.Google Scholar
  55. Kinne, O. (1984). Marine ecology (vol. 5, pp. 618). Chichester: Wiley.Google Scholar
  56. Kishe, M. A., & Machiwa, J. F. (2003). Distribution of heavy metals in sediments of Mwanza Gulf of Lake Victoria, Tanzania. Environment International, 28(7), 619–625. doi: 10.1016/S0160-4120(02)00099-5.CrossRefGoogle Scholar
  57. Kontreczky, C., Farkas, A., Nemcsok, J., & Salanki, J. (1997). Short- and long-term effects of deltamethrin on filtering activity of freshwater mussel (Anodonta cygnea L.). Ecotoxicology and Environmental Safety, 38, 195–199. doi: 10.1006/eesa.1997.1575.CrossRefGoogle Scholar
  58. Levent Tuna, A., Yilmaz, F., Demirak, A., & Ozdemir, N. (2007). Sources and distribution of trace metals in the Saricay stream basin of southwestern Turkey. Environmental Monitoring and Assessment, 125, 47–57. doi: 10.1007/s10661-006-9238-1.CrossRefGoogle Scholar
  59. Locatelli, C. (2003). Heavy metal determinations in algae, mussels and clams. Their possible employment for assessing the sea water quality criteria. Journal de Physique. IV, 107, 785–788. doi: 10.1051/jp4:20030418.CrossRefGoogle Scholar
  60. Long, A., & Wang, W. X. (2005). Assimilation and bioconcentration of Ag and Cd by the marine black bream after waterborne and dietary metal exposure. Environmental Toxicology and Chemistry, 24, 709–716. doi: 10.1897/03-664.1.CrossRefGoogle Scholar
  61. Maanan, M. (2007). Heavy metal concentrations in marine molluscs from the Moroccan coastal region. Environmental Pollution, 153, 176–183.CrossRefGoogle Scholar
  62. Maret, T. R., & Skinner, K. D. (2000). Concentrations of selected trace elements in fish tissues and streambed sediment in the Clark Fork-Pend Oreille and Spokane river basins, Washington, Idaho and Montana. Water Resources Investigations report, U. S. Geological Survey, 26 pp.Google Scholar
  63. Martincic, D., Kwokal, Z., & Branica, M. (1990). Distribution of zinc, lead, cadmium and copper between different size fractions of sediments I. The Limski kanal (north Adriatic sea). The Science of the Total Environment, 95, 201–215. doi: 10.1016/0048-9697(90)90065-3.CrossRefGoogle Scholar
  64. Martincic, D., Kwokal, Z., Peharec, Z., Margus, D., & Branica, M. (1992). Distribution of Zn, Pb, Cd, and Cu between seawater and transplanted mussels (Mytilus galloprovinciatis). The Science of the Total Environment, 119, 211–230. doi: 10.1016/0048-9697(92)90265-T.CrossRefGoogle Scholar
  65. Mason, A. Z., & Simkiss, K. (1983). Interaction between metals and their distribution in tissues of Littorina littoria (L) collected from clean and polluted sites. Journal of Marine Biological Association, 63, 661–672.CrossRefGoogle Scholar
  66. McCave, I. N., & Syvitski, J. P. M. (1991). Principles and methods of particle size analysis. In Syvitski, J. P. M. (Ed.), Principles, methods and application of particle size analysis (pp. 3–21). New York: Cambridge University Press.Google Scholar
  67. McGeer, J. C., Henningsen, G., Lanno, R., Fisher, N., Sappington, K., & Drexler, J. (2004). Issue paper on the bioavailability and bioaccumulation of metals. US Environmental Protection Agency (EPA) Risk Assessment Forum, 126 pp., on US-EPA Web site.Google Scholar
  68. McIvor, A. (2004). Freshwater mussels as biofilters. Ph.D. thesis, Department of Zoology, University of Cambridge, 157 pp.Google Scholar
  69. MOOPAM (1999). Manual of oceanographic observations and pollutant analysis methods. Regional Organization for Protection of the Marine Environment (ROPME), Kuwait, 284 pp.Google Scholar
  70. Mora, S. D., & Sheikholeslami, M. R. (2002). ASTP: Contaminant Screening Program; Final Report: Interpretation of Caspian Sea sediment data. Caspian Environment Program (CEP), 27 pp.Google Scholar
  71. MUSSELp (2004). Mussel of the month. Retrieved from The MUSSEL Project Web Site, The National Science Foundation. http://clade.acnatsci.org/mussel/m/mom/archive/2004/04-12.html.
  72. Naimo, T. J. (1995). A review of the effects of heavy metals on freshwater mussels. Ecotoxicology, 4(6), 341–362.CrossRefGoogle Scholar
  73. Nezami, S. A., Khara, H., Jamalzadeh, F., & Akbarzadeh, A. (2007). Survey factors of water physical and chemical in Anzali wetland, its inlet and outlet rivers. Pajouhesh & Sazandegi, 73, 76–83.Google Scholar
  74. Nielsen, S., & Nathan, A. (1975). Heavy metal levels in New Zealand molluscs. New Zealand Journal of Marine and Freshwater Research, 9(4), 467–481.CrossRefGoogle Scholar
  75. NOAA (1999). Sediment quality guideline developed for the national status and trends program. National Oceanic and Atmospheric Administration (NOAA). http://response.restoration.noaa.gov/cpr/sediment/SPQ.pdf.
  76. O’Connor, T. P. (1996). Trends in chemical concentrations in mussels and oysters collected along the US coast from 1986 to 1993. Marine Environmental Research, 41, 183–200. doi: 10.1016/0141-1136(95)00011-9.CrossRefGoogle Scholar
  77. Oliver, L. M., Fisher, W. S., Winstead, J. T., Hemmer, B. L., & Long, E. R. (2001). Relationships between tissue contaminants and defense-related characteristics of oysters (Crassostrea virginica) from five Florida bays. Aquatic Toxicology (Amsterdam, Netherlands), 55, 203–222. doi: 10.1016/S0166-445X(01)00161-8.Google Scholar
  78. Paez-Osuna, F., Perez-Gonzalez, R., Izaguirre-Fierro, G., Zaazueta-Padilla, H. M., & Flores-Campana, L. M. (1995). Trace metal concentrations and their distribution in the lobster Panulirus inflatus (Bouvier, 1895) from the Mexican pacific coast. Environmental Pollution, 90(2), 163–170. doi: 10.1016/0269-7491(94)00103-K.CrossRefGoogle Scholar
  79. Parvaneh, S. A. (1994). Biological characteristics and distribution of Anodonta cygnea in Anzali Wetland. Gilan Fisheries Research Center, 23 pp.Google Scholar
  80. Pip, E. (1990). Copper, lead, and cadmium concentrations in a sample of lake Winnipeg Anodonta grandis. The Nautilus, 103, 140–142.Google Scholar
  81. Pourang, N. (1995). Heavy metal bioaccumulation in different tissues of two fish species with regards to their feeding habits and trophic levels. Environmental Monitoring and Assessments, 35, 207–219.CrossRefGoogle Scholar
  82. Pourang, N. (1996). Heavy metal concentration in surficial sediments and benthic macroinvertebrates from Anzali Wetland. Hydrobiologia, 31, 53–61. doi: 10.1007/BF00025407.CrossRefGoogle Scholar
  83. Pourang, N., Nikouyan, A., & Dennis, J. H. (2005). Trace element concentrations in fish, surficial sediments and water from northern part of the Persian Gulf. Environmental Monitoring and Assessment, 109, 293–316. doi: 10.1007/s10661-005-6287-9.CrossRefGoogle Scholar
  84. Presley, B. J., Taylor, R. J., & Boothe, P. N. (1990). Trace metals in Gulf of Mexico oysters. The Science of the Total Environment, 97/98, 551–593. doi: 10.1016/0048-9697(90)90263-T.CrossRefGoogle Scholar
  85. Presley, B. J., Trefry, J. H., & Shokes, R. F. (1980). Heavy metal inputs to Mississippi Delta sediments. Water, Air, and Soil Pollution, 13, 481–494. doi: 10.1007/BF02191849.CrossRefGoogle Scholar
  86. Rainbow, P. S. (2002). Trace metal concentrations in aquatic invertebrates: Why and so what? Environmental Pollution, 120, 497–507. doi: 10.1016/S0269-7491(02)00238-5.CrossRefGoogle Scholar
  87. Rainbow, P. S., Wolowicz, M., Fialkowski, W., Smith, B. D., & Sokolowski, A. (2000). Biomonitoring of trace metals in the gulf of Gdansk, using mussels (Mytilus trossulus) and barnacles (Balanus improvisus). Water Research, 34, 1823–1829. doi: 10.1016/S0043-1354(99)00345-0.CrossRefGoogle Scholar
  88. Rashed, M. N. (2001). Monitoring of environmental heavy metals in fish from Nasser Lake. Environment International, 27(1), 27–33. doi: 10.1016/S0160-4120(01)00050-2.CrossRefGoogle Scholar
  89. Ravera, O., Frediani, A., & Riccardi, N. (2007). Seasonal variations in population dynamics and biomass of two Unio pictorum mancus (Mollusca, Unionidae) populations from two lakes of different trophic state. Journal of Limnology, 66(1), 15–27.Google Scholar
  90. Rees, D. G. (1991). Essential statistics (258 pp.). London: Chapman and Hall.Google Scholar
  91. Richman, L., & Somers, K. (2005). Can we use Zebra and Quagga mussels for biomonitoring contaminants in the Niagara River? Water, Air, and Soil Pollution, 167(1–4), 155–178. doi: 10.1007/s11270-005-0083-6.CrossRefGoogle Scholar
  92. ROPME (1999). Regional report of the state of the marine environment. Regional Organization for the Protection of the Marine Environment (ROPME), Kuwait, 220 pp.Google Scholar
  93. Saavedra, Y., González, A., Fernández, P., & Blanco, J. (2004). The effect of size on trace metal levels in raft cultivated mussels (Mytilus galloprovincialis). The Science of the Total Environment, 318(1–3), 115–124. doi: 10.1016/S0048-9697(03)00402-9.CrossRefGoogle Scholar
  94. Sajwan, K. S., Kumar, K. S., Paramasivam, S., Compton, S. S., & Richardson, J. P. (2008). Elemental status in sediment and American oyster collected from Savannah marsh/estuarine ecosystem: A preliminary assessment. Archives of Environmental Contamination and Toxicology, 54(2), 245–258. doi: 10.1007/s00244-007-9033-1.CrossRefGoogle Scholar
  95. Salánki, J., & Balogh, K. V. (1989). Physiological background for using freshwater mussels in monitoring copper and lead pollution. Hydrobiologia, 188/189, 445–453.Google Scholar
  96. Salomons, W., & Förstner, U. (1984). Metals in hydrocycle (349 pp.). New York: Springer.Google Scholar
  97. Sarkar, S. K., Bilinski, S. F., Bhattacharya, A., Saha, M., & Bilinski, H. (2004). Levels of elements in the surficial estuarine sediments of the Hugli River, northeast India and their environmental implications. Environment International, 30, 1089–1098. doi: 10.1016/j.envint.2003.10.009.CrossRefGoogle Scholar
  98. Schulz-Baldes, M. (1974). Lead uptake from sea water and food, and lead loss in the common mussel Mytilus edulis. Marine Biology (Berlin), 25(3), 177–193. doi: 10.1007/BF00394964.CrossRefGoogle Scholar
  99. Sericano, J. L., & Pucci, A. E. (1982). Cu, Cd, and Zn in Blanca Bay surface sediments, Argentina. Marine Pollution Bulletin, 13, 429–431. doi: 10.1016/0025-326X(82)90019-4.CrossRefGoogle Scholar
  100. Shulkin, V. M., Presley, B. J., & Kavun, V. I. (2003). Metal concentrations in mussel Crenomytilus grayanus and oyster Crassostrea gigas in relation to contamination of ambient sediments. Environment International, 29, 493–502. doi: 10.1016/S0160-4120(03)00004-7.CrossRefGoogle Scholar
  101. Silva, C. A. R., Rainbow, P. S., & Smith, B. D. (2003). Biomonitoring of trace metal contamination in mangrove-lined Brazilian coastal systems using the oyster Crassostrea rhizophorae: Comparative study of regions affected by oil, salt pond and shrimp farming activities. Hydrobiologia, 501, 199–206. doi: 10.1023/A:1026242417427.CrossRefGoogle Scholar
  102. Silva, C. A. R., Smith, B. D., & Rainbow, P. S. (2006). Comparative biomonitors of coastal trace metal contamination in tropical South America (N. Brazil). Marine Environmental Research, 61, 439–455. doi: 10.1016/j.marenvres.2006.02.001.CrossRefGoogle Scholar
  103. Simkiss, K., & Taylor, M. G. (1995). Transport of metals across membranes. Metal speciation and bioavailability in aquatic systems (pp. 1–44). Chichester: Wiley.Google Scholar
  104. Smit, C. E., van Wezel, A. P., Jager, T., & Traas, T. P. (2000). Secondary poisoning of cadmium, copper and mercury: Implications for the maximum permissible concentrations and negligible concentrations in water, sediment and soil. National Institute of Public Health and the Environment, The Netherlands, RIVM report 601501 009, 61 pp.Google Scholar
  105. Sokal, R. R., & Rohlf, F. J. (1995). Biometry: The principles and practice of statistics in biological research (3rd ed., pp. 887). New York: Freeman.Google Scholar
  106. Sokolowski, A., Fichet, D., Garcia-Meunier, P., Radenac, G., Wolowicz, M., & Blanchard, G. (2002). The relationship between metal concentrations and phenotypes in the Baltic clam Macoma balthica (L.) from the Gulf of Gdansk, southern Baltic. Chemosphere, 47, 475–484. doi: 10.1016/S0045-6535(02)00002-4.CrossRefGoogle Scholar
  107. Soto-Jiménez, M., & Páez-Osuna, F. (2001). Cd, Cu, Pb, and Zn in lagoonal sediments from Mazatlán Harbor (SE Gulf of California): Bioavailability and geochemical fractioning. Bulletin of Environmental Contamination and Toxicology, 66, 350–356. doi: 10.1007/s00128-001-0012-3.CrossRefGoogle Scholar
  108. Steel, R. G. D., Torrie, J. H., & Dickey, D. A. (1997). Principles and procedures of statistics. A Biometrical Approach (3rd ed., pp. 672). McGraw-Hill: Publisher.Google Scholar
  109. Struck, B. D., Pelzer, R., Ostapczuk, P., Emons, H., & Mohl, C. (1997). Statistical evaluation of ecosystem properties influencing the uptake of As, Cd, Co, Cu, Hg, Mn, Ni, Pb and Zn in seaweed (Fucus vesiculosus) and common mussel (Mytilus edulis). The Science of the Total Environment, 207, 29–42. doi: 10.1016/S0048-9697(97)00246-5.CrossRefGoogle Scholar
  110. Sunlu, U. (2006). Trace metal levels in mussels (Mytilus Galloprovincialis L. 1758) from Turkish Aegean Sea Coast. Environmental Monitoring and Assessment, 114(1–3), 273–286. doi: 10.1007/s10661-006-4780-4.CrossRefGoogle Scholar
  111. Szefer, P. (2002). Metals, metalloids and radionuclides in the Baltic Sea ecosystem (764 pp.). Amsterdam: Elsevier Science.Google Scholar
  112. Szefer, P., Ikuta, K., Frelek, K., Zdrojewska, I., & Nabrzyski, M. (1999). Mercury and other trace metals (Ag, Cr, Co, and Ni) in soft tissue and byssus of Mytilus edulis from the east coast of Kyushu Island, Japan. The Science of the Total Environment, 229, 227–234. doi: 10.1016/S0048-9697(99)00079-0.CrossRefGoogle Scholar
  113. Szefer, P., Kim, B. S., Kim, C. K., Kim, E. H., & Lee, C. B. (2004). Distribution and coassociations of trace elements in whole tissue and byssus of Mytilus galloprovincialis relative to the surrounding seawater and suspended matter of the southern part of Korean Peninsula. Environmental Pollution, 129, 209–228. doi: 10.1016/j.envpol.2003.10.012.CrossRefGoogle Scholar
  114. Tariq, J., Jaffar, M., & Ashraf, M. (1994). Distribution of trace metals in sediment and seawater from the continental shelf of Pakistan. Indian Journal of Marine Sciences, 23, 147–151.Google Scholar
  115. Türkmen, A., & Türkmen, M. (2005). Seasonal and spatial variations of heavy metals in the spiny rock oyster, Spondylus spinosus, from coastal waters of Iskenderun Bay, Northern East Mediterranean Sea, Turkey. Bulletin of Environmental Contamination and Toxicology, 75, 716–722. doi: 10.1007/s00128-005-0810-0.CrossRefGoogle Scholar
  116. Türkmen, M., & Ciminli, C. (2007). Determination of metals in fish and mussel species by inductively coupled plasma-atomic emission spectrometry. Food Chemistry, 103(2), 670–675. doi: 10.1016/j.foodchem.2006.07.054.CrossRefGoogle Scholar
  117. Uğur, A., Yener, G., & Başsarı, A. (2002). Trace metals and 210Po (210Pb) concentrations in mussels (Mytilus galloprovincialis) consumed at Western Anatolia. Applied Radiation and Isotopes, 57, 565–571. doi: 10.1016/S0969-8043(02)00141-0.CrossRefGoogle Scholar
  118. Usero, J., González-Regalado, E., & Gracia, I. (1997). Trace metals in the bivalve molluscs Ruditapes decussatus and Ruditapes philippinarum from the Atlantic coast of Southern Spain. Environment International, 23(3), 291–298. doi: 10.1016/S0160-4120(97)00030-5.CrossRefGoogle Scholar
  119. Usero, J., Morillo, J., & Gracia, I. (2005). Heavy metal concentrations in molluscs from the Atlantic coast of southern Spain. Chemosphere, 59, 1175–1181. doi: 10.1016/j.chemosphere.2004.11.089.CrossRefGoogle Scholar
  120. Vesk, P. A., & Byrne, M. (1999). Metal levels in tissue granules of the freshwater bivalve Hyridella depressa (Unionida) for biomonitoring: the importance of cryopreparation. The Science of the Total Environment, 225(3), 219–229. doi: 10.1016/S0048-9697(98)00363-5.CrossRefGoogle Scholar
  121. Wagner, A., & Boman, J. (2004). Biomonitoring of trace elements in Vietnamese freshwater mussels. Spectrochimica Acta Part B, 59, 1125–1132. doi: 10.1016/j.sab.2003.11.009.CrossRefGoogle Scholar
  122. Woitke, P., Wellmitz, J., Helm, D., Kube, P., Lepom, P., & Litheraty, P. (2003). Analysis and assessment of heavy metal pollution in suspended solids and sediments of the river Danube. Chemosphere, 51, 633–642. doi: 10.1016/S0045-6535(03)00217-0.CrossRefGoogle Scholar
  123. Wright, D. A. (1995). Trace metal and major ion interactions in aquatic animals. Marine Pollution Bulletin, 31, 8–18. doi: 10.1016/0025-326X(95)00036-M.CrossRefGoogle Scholar
  124. Zar, J. H. (1999). Biostatistical analysis (4th ed., 718 pp.) Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  125. Zarkami, R. (2003). The investigation of trophic conditions in rivers entering Anzali lagoon. Pajouhesh-va-Sazande, 56/57, 38–43.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • N. Pourang
    • 1
  • C. A. Richardson
    • 2
  • M. S. Mortazavi
    • 1
  1. 1.Iran Fisheries Research OrganizationTehranIran
  2. 2.School of Ocean Sciences, College of Natural SciencesBangor UniversityAngleseyUK

Personalised recommendations