Environmental Monitoring and Assessment

, Volume 163, Issue 1–4, pp 125–138 | Cite as

Effect of sampling effort and sampling frequency on the composition of the planktonic crustacean assemblage: a case study of the river Danube

  • Csaba Vadadi-Fülöp
  • Levente Hufnagel
  • Katalin Zsuga


Although numerous studies have focused on the seasonal dynamics of riverine zooplankton, little is known about its short-term variation. In order to examine the effects of sampling frequency and sampling effort, microcrustacean samples were collected at daily intervals between 13 June and 21 July of 2007 in a parapotamal side arm of the river Danube, Hungary. Samples were also taken at biweekly intervals from November 2006 to May 2008. After presenting the community dynamics, the effect of sampling effort was evaluated with two different methods; the minimal sample size was also estimated. We introduced a single index (potential dynamic information loss; to determine the potential loss of information when sampling frequency is reduced. The formula was calculated for the total abundance, densities of the dominant taxa, adult/larva ratios of copepods and for two different diversity measures. Results suggest that abundances may experience notable fluctuations even within 1 week, as do diversities and adult/larva ratios.


Sample size Seasonal dynamics Diversity Copepoda Cladocera 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akopian, M., Garnier, J., & Pourriot, R. (2002). Cinétique du zooplancton dans un continuum aquatique: De la Marne et son réservoir a l’ estuaire de la Seine. Comptes Rendus Biologies, 325, 807–818. doi: 10.1016/S1631-0691(02)01483-X.CrossRefGoogle Scholar
  2. Amoros, C. (1984). Crustacés cladocères, Introduction pratique a la systématique des organismes des eaux continentales francaises. Bulletin Mensuel de la Societe Linneenne de Lyon, 53, 1–63.Google Scholar
  3. Balogh, J. (1953). A zoocönológia alapjai – Grundzüge der Zoocönologie. Budapest: Akadémiai Kiadó.Google Scholar
  4. Bollens, S. M., & Frost, B. W. (1991). Diel vertical migration in zooplankton: Rapid individual responses to predators. Journal of Plankton Research, 13, 1359–1365. doi: 10.1093/plankt/13.6.1359.CrossRefGoogle Scholar
  5. Bothár, A. (1987). Produktionsschätzung von Acanthocyclops robustus (G. O. Sars) in der Donau (26, pp. 339–343). Arbeitstagung der IAD, Passau/Deutschland, Wissenschaftliche Kurzreferate.Google Scholar
  6. Bothár, A. (1988). Results of long-term zooplankton investigations in the River Danube, Hungary. Verhandlung Internationale Vereinigung Limnologie, 23, 1340–1343.Google Scholar
  7. Bothár, A. (1996). Die lang-und kurzfristigen Änderungen in der Gestaltung des Zooplanktons (Cladocera, Copepoda) der Donau - Probeentnahmestrategien (31, pp. 201–206). Arbeitstagung der IAD, Baja/Ungarn, Wissenschaftliche Referate.Google Scholar
  8. Bothár, A., & Kiss, K. T. (1990). Phytoplankton and zooplankton (Cladocera, Copepoda) relationship in the eutrophicated river Danube (Danubialia Hungarica, CXI). Hydrobiologia, 191, 165–171. doi: 10.1007/BF00026050.CrossRefGoogle Scholar
  9. Burger, D. F., Hogg, I. D., & Green, J. D. (2002). Distribution and abundance of zooplankton in the Waikato River, New Zealand. Hydrobiologia, 479, 31–38. doi: 10.1023/A:1021064111587.CrossRefGoogle Scholar
  10. Cao, Y., Williams, D. D., & Williams, N. E. (1998). How important are rare species in aquatic community ecology and bioassessment? Limnology and Oceanography, 43, 1403–1409.CrossRefGoogle Scholar
  11. Cao, Y., Larsen, D. P., Hughes, R. M., Angermeier, P. L., & Patton, T. M. (2002a). Sampling effort affects multivariate comparisons of stream assemblages. Journal of the North American Benthological Society, 21, 701–714. doi: 10.2307/1468440.CrossRefGoogle Scholar
  12. Cao, Y., Williams, D. D., & Larsen, D. P. (2002b). Comparison of ecological communities: The problem of sample representativeness. Ecological Monographs, 72, 41–56.CrossRefGoogle Scholar
  13. Cuker, B. E., & Watson, M. A. (2002). Diel vertical migration of zooplankton in contrasting habitats of the Chesapeake Bay. Estuaries, 25, 296–307. doi: 10.1007/BF02691317.CrossRefGoogle Scholar
  14. Cushing, D. H. (1951). The vertical migration of planktonic Crustacea. Biological Reviews of the Cambridge Philosophical Society, 26, 158–192. doi: 10.1111/j.1469-185X.1951.tb00645.x.CrossRefGoogle Scholar
  15. DePatta Pillar, V. (1998). Sampling sufficiency in ecological surveys. Abstracta Botanica, 22, 37–48.Google Scholar
  16. De Ruyter Van Steveninck, E. D., Van Zanten, B., & Admiraal, W. (1990). Phases in the development of riverine plankton: Examples from the rivers Rhine and Meuse. Hydrological Bulletin, 24, 47–55. doi: 10.1007/BF02256748.CrossRefGoogle Scholar
  17. Du Rietz, G. E., Fries, T. C. E., Oswald, H., & Tengwall, Y. A. (1920). Gesetze der Konstitution natürlicher Pflanzengesellschaften. Flora Fauna, 7, 1–47.Google Scholar
  18. Dussart, B. (1969). Les Copepodes des Eaux Continentales II: Cyclopoides et Biologie. Ed. N. Boubee & Cie, Paris.Google Scholar
  19. Efron, B. (1979). Bootsrap methods: Another look at the jackknife. Annals of Statistics, 7, 1–25. doi: 10.1214/aos/1176344552.CrossRefGoogle Scholar
  20. Efron, B., & Tibshirani, R. (1993). An introduction to the bootsrap. London: Chapman & Hall.Google Scholar
  21. Einsle, U. (1993). Crustacea, copepoda: Calanoida und cyclopoida. In J. Schwoerbel & P. Zwick (Ed.), Süsswasserfauna von Mitteleuropa, Bd. 8, Heft 4, Teil 1 (pp. 1–208). Stuttgart: Gustav Fischer Verlag.Google Scholar
  22. Ferrari, I., Cantarelli, M. T., Mazzocchi, M. G., & Tosi, L. (1985). Analysis of a 24-hour cycle of zooplankton sampling in a lagoon of the Po River Delta. Journal of Plankton Research, 7, 849–865. doi: 10.1093/plankt/7.6.849.CrossRefGoogle Scholar
  23. Gauch, H. G. (1982). Multivariate analysis in community ecology. Cambridge: Cambridge University Press.Google Scholar
  24. Gulyás, P. (1987). Tägliche Zooplankton-Untersuchungen im Donau-Nebenarm bei Ásványráró im Sommer 1985 (26, pp. 123–126.) Arbeitstagung der IAD, Passau/Deutschland, Wissenschaftliche Kurzreferate.Google Scholar
  25. Gulyás, P. (1994). Studies on the Rotatorian and Crustacean plankton in the Hungarian section of the Danube between 1848,4 and 1659,0 riv. km. In R. Kinzelbach (Ed.), Biologie der Donau (pp. 49–61). Stuttgart: Gustav Fischer Verlag.Google Scholar
  26. Gulyás, P. (1995). Rotatoria and Crustacea plankton of the River Danube between Bratislava and Budapest. Miscellanea Zoologica Hungarica, 10, 7–19.Google Scholar
  27. Gulyás, P., & Forró, L. (1999). Az ágascsápú rákok (Cladocera) kishatározója, 2. bővített kiadás. Vízi Természet- és Környezetvédelem, 9. kötet. Budapest: Környezetgazdálkodási Intézet.Google Scholar
  28. Gulyás, P., & Forró, L. (2001). Az evezőlábú rákok (Calanoida és Cyclopoida) alrendjeinek kishatározója, 2. bővített kiadás. Vízi Természet- és Környezetvédelem, 14. kötet. Budapest: Környezetgazdálkodási Intézet.Google Scholar
  29. Hammer, O., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological Statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 1–9.Google Scholar
  30. Ietswaart, T. H., Breebaart, L., Van Zanten, B., & Bijkerk, R. (1999). Plankton dynamics in the river Rhine during downstream transport as influenced by biotic interactions and hydrological conditions. Hydrobiologia, 410, 1–10. doi: 10.1023/A:1003801110365.CrossRefGoogle Scholar
  31. Illyová, M. (2006). Zooplankton of two arms in the Morava River floodplain in Slovakia. Biologia, 61, 531–539. doi: 10.2478/s11756-006-0087-8.CrossRefGoogle Scholar
  32. Kim, H. W., & Joo, G. J. (2000). The longitudinal distribution and community dynamics of zooplankton in a regulated large river: A case study of the Nakdong River (Korea). Hydrobiologia, 438, 171–184. doi: 10.1023/A:1004185216043.CrossRefGoogle Scholar
  33. Kobayashi, T., Shiel, R. J., Gibbs, P., & Dixon, P. I. (1998). Freshwater zooplankton in the Hawkesbury–Nepean River: Comparison of community structure with other rivers. Hydrobiologia, 377, 133–145. doi: 10.1023/A:1003240511366.CrossRefGoogle Scholar
  34. Kronberg, I. (1987). Accuracy of species and abundance minimal areas determined by similarity area curves. Marine Biology (Berlin), 96, 555–561. doi: 10.1007/BF00397974.CrossRefGoogle Scholar
  35. Lair, N. (2006). A review of regulation mechanisms of metazoan plankton in riverine ecosystems: Aquatic habitat versus biota. River Research and Applications, 22, 567–593. doi: 10.1002/rra.923.CrossRefGoogle Scholar
  36. Lampert, W. (1989). The adaptive significance of diel vertical migration of zooplankton. Functional Ecology, 3, 21–27. doi: 10.2307/2389671.CrossRefGoogle Scholar
  37. Marchant, R. (1999). How important are rare species in aquatic ecology and bioassessment? A comment to conclusions of Cao et al. 1999. Limnology and Oceanography, 44, 1840–1841.Google Scholar
  38. Maria-Heleni, Z., Michaloudi, E., Bobori, D. C., & Mourelatos, S. (2000). Zooplankton abundance in the Aliakmon River, Greece. Belgian Journal of Zoology, 130, 29–33.Google Scholar
  39. Mavuti, K. M. (1994). Durations of development and production estimates by two crustacean zooplankton species Thermocyclops oblongatus Sars (Copepoda) and Diaphanosoma excisum Sars (Cladocera) in Lake Naivasha, Kenya. Hydrobiologia, 272, 185–200. doi: 10.1007/BF00006520.CrossRefGoogle Scholar
  40. Naidenow, W. (1998). Das Zooplankton der Donau. In E. Kusel-Fetzmann, W. Naidenow, & B. Russev (Eds.), Plankton und Benthos der Donau, Ergebnisse der Donau-Forschung, Band 4 (pp. 163–248). Wien: Internationale Arbeitsgemeinschaft Donauforschung.Google Scholar
  41. Reckendorfer, W., Keckeis, H., Winkler, G., & Schiemer, F. (1999). Zooplankton abundance in the River Danube, Austria: The significance of inshore retention. Freshwater Biology, 41, 583–591. doi: 10.1046/j.1365-2427.1999.00412.x.CrossRefGoogle Scholar
  42. Saunders, J. F., & Lewis, W. M. (1988). Zooplankton abundance and transport in a tropical white-water river. Hydrobiologia, 162, 147–155. doi: 10.1007/BF00014537.CrossRefGoogle Scholar
  43. Saunders, J. F., & Lewis, W. M. (1989). Zooplankton abundance in the lower Orinoco River, Venezuela. Limnology and Oceanography, 34, 397–409.CrossRefGoogle Scholar
  44. Schmera, D., & Erős, T. (2006). Estimating sample representativeness in a survey of stream caddisfly fauna. Annales de Limnologie - International. Journal of Limnology, 42, 181–187.CrossRefGoogle Scholar
  45. Schmera, D., & Erős, T. (2008). A mintavételi erőfeszítés hatása a mintareprezentativitásra. Acta Biologica Debrecina Supplementum Oecologica Hungarica, 18, 209–213.Google Scholar
  46. Thorp, J. H., Black, A. R., Haag, K. H., & Wehr, J. D. (1994). Zooplankton assemblages in the Ohio River: Seasonal, tributary, and navigation dam effects. Canadian Journal of Fisheries and Aquatic Sciences, 51, 1634–1643. doi: 10.1139/f94-164.CrossRefGoogle Scholar
  47. Tubbing, D. G. M. J., Admiraal, W., Backhaus, D., Friedrich, G., Van Steveninck, E. D. D., Muller, D., et al. (1994). Results of an international plankton investigation on the River Rhine. Water Science and Technology, 29, 9–19.Google Scholar
  48. Van Dijk, G. M., & Van Zanten, B. (1995). Seasonal changes in zooplankton abundance in the lower Rhine during 1987–1991. Hydrobiologia, 304, 29–38. doi: 10.1007/BF02530701.CrossRefGoogle Scholar
  49. V.-Balogh, K., Bothár, A., Kiss, K. T., & Vörös, L. (1994). Bacterio-, phyto- and zooplankton of the River Danube (Hungary). Verhandlung Internationale Vereinigung Limnologie, 25, 1692–1694.Google Scholar
  50. Vranovsky, M. (1991). Zooplankton of a Danube side arm under regulated ichthyocoenosis conditions. Verhandlung Internationale Vereinigung Limnologie, 24, 2505–2508.Google Scholar
  51. Zagami, G., Badalamenti, F., Guglielmo, L., & Manganaro, A. (1996). Short-term variations of the zooplankton community near the straits of Messina (North-eastern Sicily): Relationships with the hydrodynamic regime. Estuarine, Coastal and Shelf Science, 42, 667–681. doi: 10.1006/ecss.1996.0043.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Csaba Vadadi-Fülöp
    • 1
  • Levente Hufnagel
    • 2
  • Katalin Zsuga
    • 3
  1. 1.Department of Systematic Zoology and EcologyEötvös Loránd UniversityBudapestHungary
  2. 2.Department of Mathematics and InformaticsCorvinus University of BudapestBudapestHungary
  3. 3.Environmental and Water Research Institute (VITUKI)BudapestHungary

Personalised recommendations