Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Evaluating pollution potential of leachate from landfill site, from the Pune metropolitan city and its impact on shallow basaltic aquifers

  • 1899 Accesses

  • 60 Citations


Leachate produced by municipal solid waste dumping site near the metropolitan city of Pune, India was examined for its pollution potential and impact on surrounding shallow basaltic aquifers. Twenty-eight physico-chemical parameters during post- and pre-monsoon seasons (Nov 2006 and May 2007) were determined to assess the seasonal variation in the leachate pollution index (LPI) as well as in the groundwater quality. The leachate demonstrated higher LPI value during pre-monsoon, comparable to those at other metropolises outside India. Potentially toxic leachates derived from the dumping site have largely influenced the adjoining basaltic aquifers through two different modes of transport. Despite high contents of heavy metals (Al, Cd, Cr, Cu, Co, Fe, Mn, Ni, Pb and Zn) in the leachate, the aquifers in the close proximity of landfill site are least polluted by metallic contaminants possibly due to redox controls. Various geoenvironmental features governing the dispersal of leachate contaminants in the basaltic aquifers under semi-arid climatic regime have been identified and discussed. Although a few remedial measures have been suggested to mitigate the impact of leachate percolation and dispersion, the present study demands for a proper solid waste management in metropolitan cities.


  1. APHA.AWWA, WPCF (1995). Standard methods for the examination water and wastewater (17th ed.). Washington DC, USA: APHA.AWWA, WPCF.

  2. Bean, J. E., Turner, C. A., Hooper, P. R., Subbarao, K. V., & Walsh, J. N. (1986). Stratigraphy, composition and form of Deccan Basalts, Western Ghats, India. Bulletin of Volcanology, 48, 61–83. doi:10.1007/BF01073513.

  3. Berner-Kay, E., & Berner, R. A. (1987). The global water cycle, geochemistry and environment. Englewood Cliffs: Prentice-Hall.

  4. Chttaranjan, R., & Chan, P. C. (1986). Heavy metals in landfill leachate. The International Journal of Environmental Studies, 27, 225–237.

  5. Chu, L. M., & Cheung, K. C. (1994). Variations in the chemical properties of landfill leachate. Environmental Management, 18, 105–117. doi:10.1007/BF02393753.

  6. Das, A., Krishnaswami, S., Sarin, M. M., & Pande, K. (2004). Chemical weathering in the Krishna Basin and Western Ghats of the Deccan Traps, India: Rates of basalt weathering and their controls. Geochimica et Cosmochimica Acta, 69(8), 2067–2084. doi:10.1016/j.gca.2004.10.014.

  7. Drever, J. I. (1982). The geochemistry of natural waters. New York: Prentice Hall.

  8. Edmond, J. M., Palmer, M. R., Measures, C. R., Grant, B., & Stallard, R. F. (1995). The fluvial geochemistry and denudation rate of the Guayana Shield in Venezuela. Geochimica et Cosmochimica Acta, 59, 3301–3323. doi:10.1016/0016-7037(95)00128-M.

  9. Edmunds, W. M., Carrillo-Rivera, J. J., & Cardona, A. (2002). Geochemical evolution of groundwater beneath Mexico City. Journal of Hydrology (Amsterdam), 258, 1–24. doi:10.1016/S0022-1694(01)00461-9.

  10. Eillas, J. A. (1980). Convenient parameter for tracing leachate from sanitary landfills. Water Research, 14, 1283–1287. doi:10.1016/0043-1354(80)90187-6.

  11. Environmental Status Report (ESR) (2006). Pune municipal corporation (pp. 12.1–12.12).

  12. Fatta, D., Papadopoulos, A., & Loizidou, M. (1999). A study on the landfill leachate and its impact on the groundwater quality of the greater area. Environmental Geochemistry and Health, 21(2), 175–190. doi:10.1023/A:1006613530137.

  13. Garrels, R. M. (1967). Genesis of some groundwater from igneous rocks. In P. H. Abelson (Ed.), Researches in geochemistry (Vol. 2, pp. 405–420). New York: Wiley.

  14. Hem, J. D. (1985). Study and interpretation of the chemical characteristics of natural water. USGS water supply paper 2254.

  15. Huh, Y., & Edmond, J. M. (1999). The fluvial geochemistry of the rivers of eastern Siberia: III, tributaries of the Lena and Anabar draining the basement terrain of the Siberian Craton and the Trans-Baikal highlands. Geochimica et Cosmochimica Acta, 63, 967–987. doi:10.1016/S0016-7037(99)00045-9.

  16. Indian Meteorological Department (IMD) (2007). Pune weather station report.

  17. Jalali, M. (2005). Nitrate leaching from agricultural land in Hamadan, western Iran. Agriculture Ecosystems & Environment, 110, 210–218. doi:10.1016/j.agee.2005.04.011.

  18. Jorstad, L. B., Jankowski, J., & Acworth, R. I. (2004). Analysis of the distribution of inorganic constituents in a landfill leachate contaminated aquifers Astrolabe Park, Sydney, Australia. Environmental Geology, 46, 263–272. doi:10.1007/s00254-004-0978-3.

  19. Krishnan, M. S. (1982). Geology of India and Burma (6th ed.). New Delhi: CBS.

  20. Kumar, D., & Alappat, B. J. (2005). Evaluating leachate contamination potential of landfill sites using leachate pollution Index. Clean Technologies and Environmental Policy, 7, 190–197. doi:10.1007/s10098-004-0269-4.

  21. Lee, S. M., Min, K. D., Woo, N. C., Kim, Y. J., & Ahn, C. H. (2003). Statistical assessment of nitrate contamination in urban groundwater using GIS. Environmental Geology, 44, 210–221.

  22. Loizidou, M., & Kapetanios, E. G. (1993). Effect of leachate from landfills on underground water quality. The Science of the Total Environment, 128, 69–81. doi:10.1016/0048-9697(93)90180-E.

  23. Mor, S., Ravindra, K., Dahiya, R. P., & Chandra, A. (2006). Leachate characterization and assessment of groundwater pollution near municipal solid waste landfill site. Environmental Monitoring and Assessment, 118, 435–456. doi:10.1007/s10661-006-1505-7.

  24. Papadopoulou, M. P., Karatzas, G. P., & Bougioukou, G. G. (2007). Numerical modeling of the environmental impact of landfill leachate leakage on ground water quality—a field application. Environmental Modeling and Assessment, 12, 43–54. doi:10.1007/s10666-006-9050-x.

  25. Pawar, N. J. (1993). Geochemistry of carbonate precipitation from the ground waters in basaltic aquifers: An equilibrium thermodynamic approach. Journal of the Geological Society of India, 41, 119–131.

  26. Pawar, N. J., & Shaikh, I. J. (1995). Nitrate pollution of groundwaters from shallow basaltic aquifers, Deccan trap hydrologic province, India. Environmental Geology, 25, 197–204. doi:10.1007/BF00768549.

  27. Pawar, N. J., & Nikumbh, J. D. (1999). Trace element geochemistry of groundwater from Behedi basin, Nasik district, Maharashtra. Journal of the Geological Society of India, 54, 501–514.

  28. Pawar, N. J., Thigale, S. S., & Powar, K. B. (1982). Chemsitry of groundwaters from Pune area, Maharashtra. In Proc. int. symp. hydrological aspects of mountainous watersheds, Roorkee (Vol. I, pp. X1–X6).

  29. Pawar, N. J., Pawar, J. B., Suyash, K., & Ashwini, S. (2008). Geochemical eccentricity of ground water allied to weathering of basalt from the Deccan volcanic province, India: Insinuation on CO2 consumption. Aquatic Geochemistry, 14, 41–71. doi:10.1007/s10498-007-9025-9.

  30. Pohland, F. G., Cross, W. H., & Gould, J. P. (1993). Metal speciation and mobility as influenced by landfill disposal practices. In H. E. Allen, E. M. Perdue, & D. S. Brown (Eds.), Metals in groundwater (pp. 411–429). Boca Raton: Lewis.

  31. Rabemanana, V., Violette, S., de Marsily, G., Robain, H., Deffontaines, B., Andrieux, P., et al. (2005). Origin of the high variability of water mineral content in the bedrock aquifers of Southern Madagascar. Journal of Hydrology (Amsterdam), 310, 143–156. doi:10.1016/j.jhydrol.2004.11.025.

  32. Subbarao, K. V., Chandrasekharam, D., Navaneethakrishanan, P., & Hooper, P. R. (1994). Stratigraphy and structure of parts of the central Deccan Basalt Province: Eruptive models. In K. V. Subbarao (Ed.), Volcanism-Radhakishnna volume (pp. 321–332). New York: Wiley.

  33. World Health Organization (WHO) (2002). Guideline for drinking water quality (2nd ed.). Health criteria and other supporting information (pp. 940–949). Geneva: World Health Organization.

  34. Yanful, E. K., Quigley, R. M., & Nesbitt, H. W. (1988). Heavy metal migration at a landfill site, Sarnia, Ontario, Canada—2: Metal partitioning and geotechnical implications. Applied Geochemistry, 3, 623–629. doi:10.1016/0883-2927(88)90094-7.

Download references

Author information

Correspondence to N. J. Pawar.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Kale, S.S., Kadam, A.K., Kumar, S. et al. Evaluating pollution potential of leachate from landfill site, from the Pune metropolitan city and its impact on shallow basaltic aquifers. Environ Monit Assess 162, 327–346 (2010). https://doi.org/10.1007/s10661-009-0799-7

Download citation


  • Leachate pollution index
  • Pune
  • Landfill
  • Basaltic aquifers