Advertisement

Environmental Monitoring and Assessment

, Volume 162, Issue 1–4, pp 251–263 | Cite as

Essential (Cu) and nonessential (Cd and Pb) metals in ichthyofauna from the coasts of Sinaloa state (SE Gulf of California)

  • J. Ruelas-Inzunza
  • F. Páez-Osuna
  • D. García-Flores
Article

Abstract

With the aim of giving an overview on concentration and distribution of Cd, Cu, and Pb in fish from the coasts of Sinaloa state (SE Gulf of California), specimens with different feeding habits were collected in five locations. Sampling occurred between June 2003 and March 2004. Metal analyses on fish tissues were made by graphite furnace (Cd, Pb) and flame (Cu) atomic absorption spectrophotometry. Metal concentrations in tissues of carnivorous fish were grouped together and compared with corresponding concentrations in non-carnivorous fish; Cu and Pb levels were significantly (p < 0.05) higher in liver of non-carnivorous species. Though no samples exceeded the maximum level set in international legislation for fish, from the perspective of the public health and considering the legal limits of fishery products for human consumption, Cu concentrations were exceeded (in tissues different from muscle) in four carnivorous and five non-carnivorous species according to the Australian legislation. In the case of Cd, two carnivorous species (Pomadasys leuciscus and Caulolatilus princeps) and one non-carnivorous species (Mugil cephalus), showed concentrations over the maximum level of 2 μg g − 1 dry weight considered in the Mexican legislation. Considering average amounts of fish consumption in Mexico, daily mineral intake (DMI) values for Cu and percentage weekly intake (PWI) of Cd and Pb were estimated; none of the analyzed metals in edible portion of analyzed fish could be detrimental to humans.

Keywords

Daily mineral intake Fish Gulf of California Percentage weekly intake Sinaloa state Tissue distribution Trace metals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, G. R., Bauchot, M. L., Bellwood, D. R., Bianchi, G., et al. (1995a). Peces óseos. In W. Fischer, F. Krupp, W. Schneider, C. Sommer, K. E. Carpenter, & V. H. Niem (Eds.), Guía FAO para la identificación de especies para los fines de la pesca. Pacífico Centro-oriental. Volumen II. Vertebrados-Parte 1 (pp. 647–1200). Roma: FAO.Google Scholar
  2. Allen, G. R., Bauchot, M. L., Bellwood, D. R., Bianchi, G., et al. (1995b). Peces óseos. In W. Fischer, F. Krupp, W. Schneider, C. Sommer, K. E. Carpenter, V. H. Niem (Eds.), Guía FAO para la identificación de especies para los fines de la pesca. Pacífico Centro-oriental. Volumen II. Vertebrados-Parte 1 (pp. 1201–1813). Roma: FAO.Google Scholar
  3. Alongi, D. M. (1998). Coastal ecosystem processes. Boca Raton, Florida: CRC Press.Google Scholar
  4. Amiard, J. C., Amiard-Triquet, C., Metayer, C., Marchand, J., & Ferre, R. (1980). Study on the transfer of Cd, Pb, Cu and Zn in neritic and estuarine trophic chains. I. The inner estuary of the Loire (France) in the summer of 1978. Water Research, 14, 665–673. doi: 10.1016/0043-1354(80)90125-6.CrossRefGoogle Scholar
  5. Andres, S., Ribeyre, J. N., & Boudou, A. (2000). Interspecific comparison of cadmium and zinc contamination in the organs of four fish species along a polymetallic pollution gradient (Lot River, France). The Science of the Total Environment, 48, 11–25. doi: 10.1016/S0048–9697(99)00477–5.CrossRefGoogle Scholar
  6. Barwick, M., & Maher, W. (2003). Biotransference and biomagnification of selenium, copper, cadmium, zinc, arsenic and lead in a temperate seagrass ecosystem from Lake Macquarie estuary, NSW, Australia. Marine Environmental Research, 56, 471–502. doi: 10.1016/S0141-1136(03)00028-X.CrossRefGoogle Scholar
  7. Brooks, R. R., & Rumsey, D. (1974). Heavy metals in some New Zealand commercial sea fishes. New Zealand Journal of Marine and Freshwater Research, 8(1), 155–166.CrossRefGoogle Scholar
  8. Canli, M., & Atli, G. (2003). The relationships between heavy metal (Cd, Cr, Cu, Fe, Pb, Zn) levels and the size of six Mediterranean fish species. Environmental Pollution, 121(1), 129–136. doi: 10.1016/S0269-7491(02)00194-X.CrossRefGoogle Scholar
  9. Carvalho, F. P., Fowler, S. W., González-Farías, F., Mee, L. D., & Readman, J. W. (1996). Agrochemical residues in the Altata-Ensenada del Pabellón coastal lagoon (Sinaloa, Mexico): A need for integrated coastal zone management. International Journal of Environmental Health Research, 6, 209–220. doi: 10.1080/09603129609356892.CrossRefGoogle Scholar
  10. Chan, K. M. (1995). Concentrations of copper, zinc, cadmium and lead in rabbitfish (Siganus oramin) collected in Victoria Harbour, Hong Kong. Marine Pollution Bulletin, 31(4–12), 277–280.CrossRefGoogle Scholar
  11. Cifuentes-Lemus, J. L. (2002). Introducción. In J. L. Cifuentes-Lemus, & J. Gaxiola-López (Eds.), Atlas de la Biodiversidad de Sinaloa (pp. 21–24). Culiacán: El Colegio de Sinaloa.Google Scholar
  12. Cruz-Agüero, J. A. (2002). Peces marinos de Sinaloa: Historia, distribución y diversidad. In J. L. Cifuentes-Lemus, & J. Gaxiola-López (Eds.), Atlas de la Biodiversidad de Sinaloa (pp. 301–310). Culiacán: El Colegio de Sinaloa.Google Scholar
  13. Dean, J. G., Bosqui, F. L., & Lanouette, K. H. (1972). Removing heavy metals from waste water. Environmental Science & Technology, 6(6), 518–522. doi: 10.1021/es60065a006.CrossRefGoogle Scholar
  14. Dietz, R., Riget, F., Cleeman, M., Aarkrog, A., Johansen, P., & Hansen, J. C. (2000). Comparison of contaminants from different trophic levels and ecosystems. The Science of the Total Environment, 245, 221–231. doi: 10.1016/S0048-9697(99)00447-7.CrossRefGoogle Scholar
  15. Egeland, G. M., & Middaugh, J. P. (1997). Balancing fish consumption benefits with mercury exposure. Science, 278, 1904–1905.CrossRefGoogle Scholar
  16. Furness, R. W., & Rainbow, P. S. (Eds.). (1990). Heavy metals in the marine environment. Florida: CRC.Google Scholar
  17. Galarini, R., Haouet, M. N., & Elia, A. C. (2002). Heavy metals, HCB and p,p’-DDE in Ictalurus melas Raf. from Trasimeno and Corbara lakes, Italy. Bulletin of Environmental Contamination and Toxicology, 68, 230–236. doi: 10.1007/s00128-001-0243-3.CrossRefGoogle Scholar
  18. Giordano, R., Arata, P., Ciaralli, L., Rinaldi, S., Giani, M., Cicero, A. M., & Costantini, S. (1991). Heavy metals in mussels and fish from Italian coastal waters. Marine Pollution Bulletin, 22(1), 10–14. doi: 10.1016/0025-326X(91)90438-X.CrossRefGoogle Scholar
  19. Gutleb, A. C., Helsberg, A., & Mitchell, C. (2002). Heavy metal concentrations in fish from a pristine rainforest valley in Peru: a baseline study before the start of oil-drilling activities. Bulletin of Environmental Contamination and Toxicology, 69, 523–529. doi: 10.1007/s00128-002-0093-7.CrossRefGoogle Scholar
  20. IAEA. (1990). The fate of agrochemicals in tropical coastal lagoon ecosystems. Progress report Year 1. Contract No. CI 1–0387-ME (JR). International Atomic Energy Agency: Monaco.Google Scholar
  21. Izaguirre-Fierro, G., Páez-Osuna, F., & Osuna-López, J. I. (1992). Heavy metals in fishes from Culiacán valley, Sinaloa, Mexico. Ciencias Marinas, 18(3), 143–151.Google Scholar
  22. Luoma, S. N., & Rainbow, P. S. (2005). Why is metal bioaccumulation so variable? Biodynamics as a unifying concept. Environmental Science & Technology, 39(7), 1921–1931. doi: 10.1021/es048947e.CrossRefGoogle Scholar
  23. MESL, Marine Environmental Studies Laboratory. (1997). International Atomic Energy Agency. Inorganic Laboratory, Standard Operating Procedures. Monaco, pp. 66.Google Scholar
  24. Moody, J. R., & Lindstrom, R. N. (1977). Selection and cleaning of plastic containers for storage of trace element samples. Analytical Chemistry, 49, 2264–2267. doi: 10.1021/ac50022a039.CrossRefGoogle Scholar
  25. Mormede, S., & Davies, I. M. (2001). Trace elements in deep water fish species from the Rockall Trough. Fisheries Research, 51(2–3), 197–206. doi: 10.1016/S0165-7836(01)00245-4.CrossRefGoogle Scholar
  26. Nauen, C. E. (1983). Compilation of legal limits for hazardous substances in fish and fishery products. FAO Fisheries Circular, 764, 102.Google Scholar
  27. Norma Oficial Mexicana (1993). NOM-027-SSA1-1993. Pescados frescos-refrigerados y congelados. Google Scholar
  28. Páez-Osuna, F., Bojórquez-Leyva, H., & Ruelas-Inzunza, J. (1999). Regional variations of heavy metal concentrations in tissues of barnacles from the subtropical Pacific coast of Mexico. Environment International, 25(5), 647–654. doi: 10.1016/S0160-4120(99)00032-X.CrossRefGoogle Scholar
  29. Pentreath, R. J. (1977). The accumulation from water of 65Zn, 54Mn, 58Co and 59Fe by the mussel, Mytilus edulis. Journal of the Marine Biological Association of the United Kingdom, 53, 127–143.CrossRefGoogle Scholar
  30. Phillips, D. J. H. (1977). The use of biological indicator organisms to monitor trace metal pollution in marine and estuarine environments—A review. Environmental Pollution, 13, 281–317. doi: 10.1016/0013-9327(77)90047-7.CrossRefGoogle Scholar
  31. Rainbow, P. S. (1993). Biomonitoring of marine heavy metal pollution and its application in Hong Kong waters. The Marine Biology of the South China Sea. Proceedings of the First International Conference on the Marine Biology of Hong Kong and the South China sea (pp. 235–250).Google Scholar
  32. Ruelas-Inzunza, J., & Páez-Osuna, F. (2005). Mercury in fish and shark tissues from two coastal lagoons in the Gulf of California, Mexico. Bulletin of Environmental Contamination and Toxicology, 74, 294–300. doi: 10.1007/s00128-004-0583-x.CrossRefGoogle Scholar
  33. Ruelas-Inzunza, J., & Páez-Osuna, F. (2007a). Essential and toxic metals in nine fish species for human consumption from two coastal lagoons in the Eastern Gulf of California. Journal of Environmental Science and Health Part A, 42, 1411–1416. doi: 10.1080/10934520701480615.CrossRefGoogle Scholar
  34. Ruelas-Inzunza, J., & Páez-Osuna, F. (2007b). Trophic distribution of Cd, Pb, and Zn in a food web from Altata-Ensenada del Pabellón subtropical lagoon, SE Gulf of California. Archives of Environmental Contamination and Toxicology. doi: 10.1007/s00244-007-9075-4.
  35. Ruelas-Inzunza, J., Meza-López, G., & Páez-Osuna, F. (2008). Mercury in fish that are of dietary importance from the coasts of Sinaloa (SE Gulf of California). Journal of Food Composition and Analysis, 21, 211–218. doi: 10.1016/j.jfca.2007.11.004.CrossRefGoogle Scholar
  36. Simkiss, K., & Mason, A. Z. (1983). Metal ions: metabolic and toxic effects. In K. M. Wilbur (Ed.), The Mollusca, environmental biochemistry and physiology, (vol. 2, pp. 101–164). USA: Academic.Google Scholar
  37. Soto-Jiménez, M., Páez-Osuna, F., Scelfo, G., Hibdon, S., Franks, R., Aggarawl, J., & Flegal, A. R. (2008). Lead pollution in subtropical ecosystems on the SE Gulf of California Coast: A study of concentrations and isotopic composition. Marine Environmental Research, 66, 451–458. doi: 10.1016/j.marenvres.2008.07.009.CrossRefGoogle Scholar
  38. Storelli, M. M., Giacominelli, R., Storelli, A., & Marcotrigiano, G. O. (2005). Accumulation of mercury, cadmium, lead and arsenic in swordfish and bluefin tuna from the Mediterranean sea: A comparative study. Marine Pollution Bulletin, 44, 281–288.Google Scholar
  39. Szefer, P. (1991). Interphase and trophic relationships of metals in a southern Baltic ecosystem. The Science of the Total Environment, 101, 201–215. doi: 10.1016/0048-9697(91)90034-C.CrossRefGoogle Scholar
  40. UNEP. (1993). Guidelines for monitoring chemical contaminants in the sea using marine organisms. Reference methods for marine pollution studies. No. 6.Google Scholar
  41. Wang, W.-X., Fisher, N. S., & Luoma, S. N. (1996). Kinetic determinations of trace element bioaccumulation in the mussel Mytilus edulis. Marine Ecology Progress Series, 140, 91–113. doi: 10.3354/meps140091.CrossRefGoogle Scholar
  42. Watling, H. R. (1983). Accumulation of seven metals by Crassostrea gigas, C. margaritacea, Perna perna and Chromytillus meridionalis. Bulletin of Environmental Contamination and Toxicology, 30, 213–320. doi: 10.1007/BF01610139.CrossRefGoogle Scholar
  43. WHO (2003, August). Nutrition. Retrieved from www.who.int/nut/research1.htm.
  44. Zhou, H. Y., Cheung, R. Y. H., Chan, K. M., & Wong, M. H. (1998). Metal concentrations in sediments and Tilapia collected from inland waters of Hong Kong. Water Research, 32(11), 3331–3340. doi: 10.1016/S0043-1354(98)00115-8.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • J. Ruelas-Inzunza
    • 1
    • 3
  • F. Páez-Osuna
    • 2
  • D. García-Flores
    • 1
  1. 1.Technological Institute of MazatlánSinaloaMexico
  2. 2.Instituto de Ciencias del Mar y Limnología/Universidad Nacional Autónoma de MéxicoSinaloaMexico
  3. 3.SinaloaMexico

Personalised recommendations