Environmental Monitoring and Assessment

, Volume 162, Issue 1–4, pp 123–137 | Cite as

Groundwater geochemistry and identification of hydrogeochemical processes in a hard rock region, Southern India

Article

Abstract

Hydrogeochemical investigations were carried out in Chithar River basin, Tamil Nadu, India to identify the major geochemical processes that regulate groundwater chemistry. For this study, long-term (1991–1997) and recent water quality data (2001–2002) for 30 groundwater wells spread over the study area were used to understand the groundwater geochemistry and hydrogeochemical process regulating groundwater quality. Groundwater quality data obtained from more than 400 water samples were employed. Results of electrical conductivity and chloride express large variation between minimum and maximum values and high standard deviation, which suggests that the water chemistry in the study region is not homogeneous and influenced by complex contamination sources and geochemical process. Nitrate and depth to water table expose the influences of surface contamination sources, whereas dissolved silica, fluoride and alkalinity strongly suggest the effect of rock–water interaction. In the study region, weathering of carbonate and silicate minerals and ion exchange reactions predominantly regulate major ion chemistry. Besides, the concentrations of sulphate, chloride and nitrate firmly suggest the impact of agricultural activities such as irrigation return flow, fertiliser application, etc on water chemistry in the study region.

Keywords

Groundwater Geochemistry Hydrogeochemical processes Water–rock interaction Chithar River basin Tamil Nadu India 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. APHA (1995). Standard methods for the examination of water and wastewater (19th ed.). Washington, DC: American public Health Association.Google Scholar
  2. Apodaca, L. E., Jeffrey, B. B., & Michelle, C. S. (2002). Water quality in shallow alluvial aquifers, Upper Colorado River Basin, Colorodo. Journal of the American Water Resources Association, 38, 133–143. doi:10.1111/j.1752-1688.2002.tb01541.x.CrossRefGoogle Scholar
  3. Balasubramanian, A., & Sastri, J. C. V. (1994). Groundwater resources of Tamirabarani River basin, Tamil Nadu, India (pp. 484–501). India, Inland Water Resources.Google Scholar
  4. Cederstorm, D. J. (1946). Genesis of groundwater in the coastal plain of Virginia. Environmental Geology, 41, 218–245.Google Scholar
  5. Comly, H. H. (1945). Cyanosis in infants caused by nitrates in well water. Journal of the American Medical Association, 129, 12–114.Google Scholar
  6. Das, B. K., & Kaur, P. (2001). Major ion chemistry of Renuka lake and weathering processes, Sirmaur district, Himachal Pradesh, India. Journal of Environmental Geology, 40, 908–917. doi:10.1007/s002540100268.CrossRefGoogle Scholar
  7. Datta, P. S., & Tyagi, S. K. (1996). Major ion chemistry of groundwater in Delhi area: Chemical weathering processes and groundwater regime. Journal of the Geological Society of India, 47, 179–188.Google Scholar
  8. Devadas, D. J., Rao, N. S., Rao, B. T., Rao, K. V. S., & Subrahmanyam, A. (2007). Hydrogeochemistry of the Sarada river basin, Visakhapatnam district, Andhra Pradesh, India. Environmental Geology, 52, 1331–1342. doi:10.1007/s00254-006-0577-6.CrossRefGoogle Scholar
  9. Elango, L., Kannan, R., & Senthil Kumar, M. (2003). Major ion chemistry and identification of hydrogeochemical processes of groundwater in a part of Kancheepuram district, Tamil Nadu, India. Journal of Environmental Geoscience, 10, 157–166.CrossRefGoogle Scholar
  10. Fisher, S. R., & Mullican, W. F. (1997). Hydrogeochemical evolution of sodium-sulphate and sodium-chloride groundwater beneath the northern Chihuahua desert, Trans-Pecos, Texas, U.S.A. Hydrogeology Journal, 5, 4–16. doi:10.1007/s100400050102.CrossRefGoogle Scholar
  11. Garrels, R. M., & Mackenzie, F. T. (1971). Evolution of sedimentary rocks. New York: WW Norton.Google Scholar
  12. Gibbs, R. J. (1970). Mechanisms controlling world water chemistry. Science Journal, 170, 795–840.Google Scholar
  13. Gilly, G., Corrao, G., & Favilli, S. (1984). Concentrations of nitrates in drinking water and incidence of gastric carcinomas. First descriptive study of the Piemonate Region, Italy. The Science of the Total Environment, 34, 35–37. doi:10.1016/0048-9697(84)90039-1.CrossRefGoogle Scholar
  14. GSI (1995). Geological and mineral map of Tamil Nadu and Pondicherry. Published in 1: 500,000 scale by the Director General, Geological Survey of India.Google Scholar
  15. Hem, J. D. (1985). Study and interpretation of the chemical characteristics of natural water (3rd ed.). U.S. Geological Survey Water-Supply Paper, 2254, 263.Google Scholar
  16. Holland, H. D. (1978). The chemistry of the atmosphere and ocean. New York: Wiley.Google Scholar
  17. Jankowski, J., & Acworth, R. I. (1997). Impact of debris-flow deposits on hydrogeochemical process and the development of dry land salinity in the Yass River catchment, New South Wales, Australia. Hydrogeology Journal, 5, 71–88. doi:10.1007/s100400050119.CrossRefGoogle Scholar
  18. Jayananda, M., Janardhan, A. S., Sivasubramaniam, P., & Pencay, J. J. (1995). Geochronologic and istopic constraints on granulite formation in the Kodaikanal area, Southern India. Journal of the Geological Society of India, 34, 373–390.Google Scholar
  19. Katz, B. G., Gopalan, T. B., Bullen, T. D., & Davis, J. H. (1998). Use of chemical and isotopic tracers to characterise the interaction between groundwater and surface water in mantled karst. Groundwater Journal, 35, 1014–1028.Google Scholar
  20. Mayo, A. L., & Loucks, M. D. (1995). Solute and isotopic geochemistry and groundwater flow in the Central Wasatch Range, Utah. Journal of Hydrology (Amsterdam), 172, 31–59. doi:10.1016/0022-1694(95)02748-E.CrossRefGoogle Scholar
  21. Mohan, R., Singh, A. K., Tripathi, J. K., & Chowdhary, G. C. (2000). Hydrochemistry and quality assessment of groundwater in Naini industrial area, Allahabad District, Uttar Pradesh. Journal of the Geological Society of India, 55, 77–89.Google Scholar
  22. Möller, P., Rosenthal, E., Geyer, S., Guttman, J., Dulski, P., Rybakov, M., et al. (2007). Hydrochemical processes in the lower Jordan valley and in the Dead Sea area. Chemical Geology, 239, 27–49. doi:10.1016/j.chemgeo.2006.12.004.CrossRefGoogle Scholar
  23. PWD (2002). Groundwater perspectives: A profile of Tirunelveli district, Tamil Nadu, India (pp. 53–65). India: Public Works Department, Government of Tamil Nadu.Google Scholar
  24. PWD (2004). Groundwater quality data of Tirunelveli District for the period 1991–2003 collected from state ground and surface water resources data centre. India: Public Works Department, Government of Tamil Nadu.Google Scholar
  25. Rammohan, H. S. (1984). A climatological assessment of water recourses of Tamil Nadu. Indian Journal of Power and River Valley Development, 34, 58–63.Google Scholar
  26. Salama, R. B., Tapley, I., Ishii, T., & Hawkes, G. (1994). Identification of areas of recharge and discharge using Landsat-TM satellite imagery and aerial photography mapping techniques. Journal of Hydrology (Amsterdam), 162, 119–141. doi:10.1016/0022-1694(94)90007-8.CrossRefGoogle Scholar
  27. Sami, K. (1992). Recharge mechanisms and geochemical processes in a semi-arid sedimentary basin, Eastern Cape, South Africa. Journal of Hydrology (Amsterdam), 139, 27–48. doi:10.1016/0022-1694(92)90193-Y.CrossRefGoogle Scholar
  28. Sarin, M. M., Krishnaswamy, S., Dilli, K., Somayajulu, B. L. K., & Moore, W. S. (1989). Major ion chemistry of the Ganga-Brahmaputra river system: Weathering process and fluxes to the Bay of Bengal. Geochimica et Cosmochimica Acta, 53, 997–1009. doi:10.1016/0016-7037(89)90205-6.CrossRefGoogle Scholar
  29. Schoeller, H. (1965). Qualitative evaluation of groundwater resources. In Methods and techniques of groundwater investigations and development (pp. 54–83). UNESCO.Google Scholar
  30. Schoeller, H. (1967). Geochemistry of groundwater—an international guide for research and practice (Chap. 15, pp. 1–18). UNESCO.Google Scholar
  31. Sikdar, P. K., Sarkar, S. S., & Palchoudhury, S. (2001). Geochemical evolution of groundwater in the quaternary aquifer of Calcutta and Howrah, India. Journal of Asian Earth Sciences, 19, 579–594. doi:10.1016/S1367-9120(00)00056-0.CrossRefGoogle Scholar
  32. Stallard, R. F., & Edmond, J. M. (1983). Geochemistry of the Amazon, the influence of geology and weathering environment on the dissolved load. Journal of Geophysical Research, 88, 9671–9688. doi:10.1029/JC088iC14p09671.CrossRefGoogle Scholar
  33. Subramani, T. (2005). Hydrogeology and identification of geochemical processes in Chithar River Basin, Tamil Nadu, India. Ph.D. Thesis, Anna University, Chennai, India.Google Scholar
  34. Subramani, T., Elango, L., & Damodarasamy, S. R. (2005a). Groundwater quality and its suitability for drinking and agricultural use in Chithar River basin, Tamil Nadu, India. Journal of Environmental Geology, 47, 1099–1110. doi:10.1007/s00254-005-1243-0.CrossRefGoogle Scholar
  35. Subramani, T., Elango, L., Srinivasalu, S., & Marikio, T. (2005b). Geological setting and groundwater chemistry in Chithar River basin, Tamil Nadu, India. Journal of Indian Mineralogist, 39, 108–119.Google Scholar
  36. Tesoriero, A. J., Spruill, T. B., & Eimers, L. (2004). Geochemistry of shallow ground water in coastal plain environments in the southeastern United States: Implications for aquifer susceptibility. Applied Geochemistry, 19, 1471–1482. doi:10.1016/j.apgeochem.2004.01.021.CrossRefGoogle Scholar
  37. Yoshida, M. (1992). Precambrian tectonothermal events in east Gondwana land crustal fragments and their correlation (IGCP-288), In R. Tsudhi (Ed.), Japan contribution to the IGCP (pp. 51–62). Osaka.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Civil EngineeringGovernment College of EngineeringSalemIndia
  2. 2.Department of Waste Treatment and Conditioning Research, Nuclear Energy DivisionCommissariat a l’energie atomique (CEA)Bagnols-Sur-Ceze CedexFrance
  3. 3.Department of GeologyAnna UniversityChennaiIndia

Personalised recommendations