Environmental Monitoring and Assessment

, Volume 162, Issue 1–4, pp 47–65 | Cite as

Using diatoms as quality indicators for a newly-formed urban lake and its catchment

  • Ingrid JüttnerEmail author
  • P. James Chimonides
  • Steve J. Ormerod


Periphytic diatoms were studied to evaluate the water quality of a newly created lake, formed by the enclosure of the formerly tidal Cardiff Bay (Wales, UK), and the effects of two inflowing rivers which drain densely populated and industrialised catchments. Seven sites in Cardiff Bay and two locations on the inflowing rivers were monitored for diatoms and water chemistry over 2 years. Water quality was assessed using a revised UK trophic diatom index (TDI) and new methods to determine ecological quality ratios and ecological status classes as required by the EU Water Framework Directive. Diatom assemblages reflected spatiotemporal variations in environmental conditions between the rivers and Cardiff Bay and within the bay. In the bay, diatoms reflected differences in river quality and possibly local pollution in certain areas of the lake. High values of the TDI indicated eutrophic to hypertrophic conditions in both rivers and in the bay and diatoms indicated poor ecological status.


Water quality Eutrophication Lake Diatom index Cardiff Bay 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ács, É., Reskóné, N. M., Szabó, K., Taba, G., & Kiss, K. T. (2005). Application of benthic diatoms in water quality monitoring of Lake Velence—recommendations and assignments. Acta Botanica Hungarica, 47, 211–223. doi: 10.1556/ABot.47.2005.3-4.1.CrossRefGoogle Scholar
  2. Anderson, N. J., Rippey, B., & Stevenson, A. C. (1990). Change to a diatom assemblage in a eutrophic lake following point source nutrient re-direction: A paleolimnological approach. Freshwater Biology, 23, 205–217. doi: 10.1111/j.1365-2427.1990.tb00266.x.CrossRefGoogle Scholar
  3. Andrews, D., & Gulson, J. (2002). Environmental regulation of the Cardiff Bay barrage. Proceedings of the Institution of Civil Engineers—Water and Maritime Engineering, 154, 89–92.Google Scholar
  4. Azous, A. L., & Horner, R. R. (2000). Wetlands and urbanization: Implications for the future. London: Taylor & Francis.Google Scholar
  5. Belton, T. J., Ponader, K. C., & Charles, D. F. (2004). Trophic diatom indices (TDI) and the development of site-specific nutrient criteria. Report New Jersey Center for Environmental Research, The State of New Jersey.Google Scholar
  6. Bennion, H. (1995). Surface-sediment diatom assemblages in shallow, artificial, enriched ponds, and implications for reconstructing trophic status. Diatom Research, 10, 1–19.Google Scholar
  7. Bennion, H., Juggins, S., & Anderson, N. J. (1996). Predicting epilimnetic phosphorus concentrations using an improved diatom-based transfer function and its application to lake management. Environmental Science & Technology, 30, 2004–2007. doi: 10.1021/es9508030.CrossRefGoogle Scholar
  8. Best, S. (2004). A whim set in concrete. The campaign to stop the Cardiff Bay barrage. Bridgend, Seren.Google Scholar
  9. Biggs, B. J. F., & Smith, R. A. (2002). Taxonomic richness of stream benthic algae: Effects of flood disturbance and nutrients. Limnology and Oceanography, 47, 1175–1186.Google Scholar
  10. Blanco, S., Ector, L., & Bécares, E. (2004). Epiphytic diatoms as water quality indicators in Spanish shallow lakes. Vie et Milieu, 54, 71–79.Google Scholar
  11. Bolton, S. (2006). A report on the distribution of the larvae of Chironomidae in Cardiff Bay 2004–2005. Cardiff: Final Report, Cardiff Harbour Authority.Google Scholar
  12. Bolton, S. (2007). Monitoring of adult Chironomidae in Cardiff Bay 2001–2006. Cardiff: Final Report, Cardiff Harbour Authority.Google Scholar
  13. Bowen, L. (2006). Patterns, causes and consequences of chlorophyll-a dynamics in Cardiff Bay. MSc Thesis, Department of Engineering, Cardiff University, Cardiff.Google Scholar
  14. Bradbury, J. P., & Winter, T. C. (1976). Areal distribution and stratigraphy of diatoms in the sediments of Lake Sallie, Minnesota. Ecology, 57, 1005–1014. doi: 10.2307/1941065.CrossRefGoogle Scholar
  15. Brönmark, C., & Hansson, L.-A. (2002). Environmental issues in lakes and ponds: Current state and perspectives. Environmental Conservation, 29, 290–307. doi: 10.1017/S0376892902000218.CrossRefGoogle Scholar
  16. Cardiff Harbour Authority (2004–2007). Water quality monitoring reports. Cardiff: Cardiff Harbour Authority, Cardiff County Council.Google Scholar
  17. Carpenter, S. R., & Cottingham, K. L. (1997). Resilience and restoration of lakes. Conservation Ecology [online], 1.
  18. Carpenter, S. R., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N., & Smith, V. H. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications, 8, 559–568. doi: 10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2.CrossRefGoogle Scholar
  19. Choe, J. S., Bang, K. W., & Lee, J. H. (2002). Characterization of surface runoff in urban areas. Water Science and Technology, 45, 249–254.Google Scholar
  20. Clarke, K. R., & Gorley, R. N. (2006). Primer v6, user manual/tutorial. Plymouth: PRIMER-E.Google Scholar
  21. Clarke, K. R., & Warwick, R. M. (1994). Changes in marine communities: An approach to statistical analysis and interpretation. Plymouth: Plymouth Marine Laboratory.Google Scholar
  22. Coley, A. R., & Clabburn, P. (2005). GIS visualisation and analysis of mobile hydroacoustic fisheries data: A practical example. Fisheries Management and Ecology, 12, 361–367. doi: 10.1111/j.1365-2400.2005.00461.x.CrossRefGoogle Scholar
  23. Cook, D., Welch, E. B., Peterson, S., & Nichols, S. A. (2005). Restoration and management of lakes and reservoirs. London: Taylor & Francis.Google Scholar
  24. Council of the European Communities (1991). Directive 1991/91/271/EEC of the European parliament and of the council of 21 May 1991 concerning urban wastewater treatment. Official Journal of the European Communities, L135, 40–52.Google Scholar
  25. Council of the European Communities (2000). Directive 2000/60/EC of the European parliament and of the council of 23 October 2000 establishing a framework for community action in the field of water policy. Official Journal of the European Communities, L327, 1–72.Google Scholar
  26. Council of the European Union (2006). Directive 2006/7/EC of 15 February 2006 concerning the management of bathing water quality and repealing Directive 76/160/EEC. Official Journal of the European Union, L64, 37–51.Google Scholar
  27. Crompton, D. (2002). Cardiff Bay barrage. Proceedings of the Institution of Civil Engineers — Water & Maritime Engineering, 154, 81–88. doi: 10.1680/maen. Scholar
  28. Davies, G., Butler, D., Mills, M., & Williams, D. (1997). A survey of ferruginous minewater impacts in the Welsh coalfields. Water and Environment Journal, 11, 140–146. doi: 10.1111/j.1747-6593.1997.tb00105.x.CrossRefGoogle Scholar
  29. Dixit, S. S., Dixit, A. S., & Smol, J. P. (1992). Assessment of changes in lake water chemistry in Sudbury area lakes since preindustrial times. Canadian Journal of Fisheries and Aquatic Sciences, 49, 8–16.CrossRefGoogle Scholar
  30. Douglas, M. S. V., & Smol, J. P. (1995). Periphytic diatom assemblages from high Arctic ponds. Journal of Phycology, 31, 60–69. doi: 10.1111/j.0022-3646.1995.00060.x.CrossRefGoogle Scholar
  31. Environment Agency Wales (2007). Environmental reports. Cardiff Bay.
  32. Firth, J. N. M., Ormerod, S. J., & Prosser, H. J. (1995). The past, present and future of waste management in Wales: A case study of environmental problems in a small European region. Journal of Environmental Management, 44, 163–179.Google Scholar
  33. Foster, I. D. L., Charlesworth, S. M., & Keen, D. H. (1991). A comparative study of heavy metal contamination and pollution in four reservoirs in the English Midlands, UK. Hydrobiologia, 214, 155–162. doi: 10.1007/BF00050945.CrossRefGoogle Scholar
  34. Gomez, N. (1998). Use of epipelic diatoms for evaluation of water quality in the Matanza-Riachuelo (Argentina), a pampean plain river. Water Research, 3, 2029–2034. doi: 10.1016/S0043-1354(97)00448-X.CrossRefGoogle Scholar
  35. Gomez, N. (1999). Epipelic diatoms from the Matanza-Riachuelo river (Argentina), a highly polluted basin from the pampean plain: Biotic indices and multivariate analysis. Aquatic Ecosystem Health & Management, 2, 301–309.CrossRefGoogle Scholar
  36. Gulati, R. D., & van Donk, E. (2002). Lakes in The Netherlands, their origin, eutrophication and restoration: State-of-the-art review. Hydrobiologia, 478, 73–106. doi: 10.1023/A:1021092427559.CrossRefGoogle Scholar
  37. Guzkowska, M. A. J., & Gasse, F. (1990a). The seasonal response of diatom communities to variable water quality in some English urban lakes. Freshwater Biology, 23, 251–264. doi: 10.1111/j.1365-2427.1990.tb00269.x.CrossRefGoogle Scholar
  38. Guzkowska, M. A. J., & Gasse, F. (1990b). Diatoms as indicators of water quality in some English urban lakes. Freshwater Biology, 23, 233–250. doi: 10.1111/j.1365-2427.1990.tb00268.x.CrossRefGoogle Scholar
  39. Harris, E., Falconer, R. A., Kay, D., & Stapleton, C. (2002). Development of a modelling tool to quantify faecal indicator levels in Cardiff Bay. Proceedings of the Institution of Civil Engineers—Water and Maritime Engineering, 154, 129–135.Google Scholar
  40. Hawes, I. H., & Smith, R. (1993). Effect of localised nutrient enrichment on the shallow epilithic periphyton of oligotrophic Lake Taupo. New Zealand Journal of Marine and Freshwater Research, 27, 365–372.CrossRefGoogle Scholar
  41. Hofmann, G. (1994). Aufwuchs-Diatomeen in Seen und ihre Eignung als Indikatoren der Trophie. In H. Lange-Bertalot (Ed.), Bibliotheca Diatomologica, (Vol. 30). Berlin: J. Cramer.Google Scholar
  42. Hunter, P. D., & Gander, H. C. W. (2002). Cardiff Bay barrage: Planning and design. Proceedings of the Institution of Civil Engineers—Water and Maritime Engineering, 154, 117–128.Google Scholar
  43. Hürlimann, J., & Schanz, F. (1988). Periphyton diatom communities and trophic states of three shallow lakes in the Pfynwald region of canton Valais, Schwitzerland. Archiv für Hydrobiologie, 78(Supplement), 351–371.Google Scholar
  44. Johnes, P. J., Foy, R., Butterfield, D., & Haygarth, P. M. (2007). Land use scenarios for England and Wales: Evaluation of management options to support “good ecological status” in surface freshwaters. Soil Use and Management, 23(Suppl.1), 176–194. doi: 10.1111/j.1475-2743.2007.00120.x.CrossRefGoogle Scholar
  45. Jongman, R. H. G., Ter Braak, C. J. F., & Van Tongeren, O. F. R. (1995). Data analysis in community and landscape ecology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  46. Jørgensen, S. E., Löffler, H., Rast, W., & Straškraba, M. (2005). Lake and reservoir management. Developments in water science (Vol. 54). Amsterdam: Elsevier.Google Scholar
  47. Jüttner, I., Rothfritz, H., & Ormerod, S. J. (1996). Diatoms as indicators of river quality in the Nepalese Middle Hills with consideration of the effects of habitat-specific sampling. Freshwater Biology, 36, 475–486. doi: 10.1046/j.1365-2427.1996.00101.x.CrossRefGoogle Scholar
  48. Jüttner, I., Sharma, S., Dahal, B. M., Ormerod, S. J., Chimonides, P. J., & Cox, E. J. (2003). Diatoms as indicators of stream quality in the Kathmandu Valley and Middle Hills of Nepal and India. Freshwater Biology, 48, 2065–2084. doi: 10.1046/j.1365-2427.2003.01138.x.CrossRefGoogle Scholar
  49. Kelly, M., Juggins, S., Guthrie, R., Pritchard, S., Jamieson, J., Rippey, B., et al. (2008). Assessment of ecological status in UK rivers using diatoms. Freshwater Biology, 53, 403–422.Google Scholar
  50. Kelly, M. G. (1998). Use of the trophic diatom index to monitor eutrophication in rivers. Water Research, 32, 236–242. doi: 10.1016/S0043-1354(97)00157-7.CrossRefGoogle Scholar
  51. Kelly, M. G., Adams, C., Graves, A. C., Jamieson, J., Krokowski, J., Lycett, E. B., et al. (2001). The trophic diatom index: A user’s manual. Revised edition. Bristol: Environment Agency R & D Technical Report E2/TR2.Google Scholar
  52. Kelly, M. G., Juggins, S., Bennion, H., Burgess, A., Yallop, M., Hirst, H., et al. (2006). Use of diatoms for evaluating ecological status in UK freshwaters. Bristol: Science Report to the UK Environment Agency.Google Scholar
  53. Kelly, M. G., Penny, C. J., & Whitton, B. A. (1995). Comparative performance of benthic diatom indices used to assess river water quality. Hydrobiologia, 302, 179–188.Google Scholar
  54. Kelly, M. G., & Whitton, B. A. (1995). The trophic diatom index: A new index for monitoring eutrophication in rivers. Journal of Applied Phycology, 7, 433–444. doi: 10.1007/BF00003802.CrossRefGoogle Scholar
  55. King, L., Barker, P., & Jones, R. I. (2000). Epilithic algal communities and their relationship to environmental variables in lakes of the English Lake District. Freshwater Biology, 45, 425–442. doi: 10.1046/j.1365-2427.2000.00633.x.CrossRefGoogle Scholar
  56. Kitner, M., & Poulíčková, A. (2003). Littoral diatoms as indicators for the eutrophication of shallow lakes. Hydrobiologia, 506–509, 519–524. doi: 10.1023/B:HYDR.0000008567.99066.92.
  57. Krammer, K. (1997). Die cymbelloiden Diatomeen. Eine Monographie der weltweit bekannten Taxa. Bibliotheca Diatomologica, 36, 37. doi: 10.1159/000119358.Google Scholar
  58. Krammer, K. (2002). Cymbella. In H. Lange-Bertalot (Ed.), Diatoms of Europe (Vol. 3). Rugell: A.R.G. Gantner.Google Scholar
  59. Krammer, K., & Lange-Bertalot, H. (1986–1991). Bacillariophyceae. In H. Ettl, G. Gärtner, J. Gerloff, H. Heynig, & D. Mollenhauer (Eds.), Süßwasserflora von Mitteleuropa (Vol. 2/1–2/4). Stuttgart: Gustav Fischer.Google Scholar
  60. Lange-Bertalot, H. (2001). Navicula sensu stricto. 10 Genera Separated from Navicula sensu lato. Frustulia. In H. Lange-Bertalot (Ed.), Diatoms of Europe (Vol. 2), Rugell: A.R.G. Gantner.Google Scholar
  61. Lim, D. S. S., Kwan, C., & Douglas, M. S. V. (2001). Periphytic diatom assemblages from Bathurst Island, Nunavut, Canadian High Arctic: An examination of community relationships and habitat preferences. Journal of Phycology, 37, 379–392. doi: 10.1046/j.1529-8817.2001.037003379.x.CrossRefGoogle Scholar
  62. Lobo, E. A., Bes, D., Tudesque, L., & Ector, L. (2004). Water quality assessment of the Pardinho River, RS, Brazil, using epilithic diatom assemblages and faecal coliforms as biological indicators. Vie et Milieu, 54, 115–125.Google Scholar
  63. Lobo, E. A., Katoh, K., & Aruga, Y. (1995). Response of epilithic diatom assemblages to water pollution in rivers in the Tokyo Metropolitan area, Japan. Freshwater Biology, 34, 191–204. doi: 10.1111/j.1365-2427.1995.tb00435.x.CrossRefGoogle Scholar
  64. Mance, G. (1981). The quality of urban storm discharges—a review. Water Research Centre Environmental Protection Report 192-M, Stevenage.Google Scholar
  65. Meriläinen, J. J., Hynynen, J., Palomäki, A., Mäntykoski, K., & Witick, A. (2003). Environmental history of an urban lake: A palaeolimnological study of Lake Jyväsjärvi, Finland. Journal of Paleolimnology, 30, 387–406. doi: 10.1023/B:JOPL.0000007229.46166.59.CrossRefGoogle Scholar
  66. Mortberg, U. M., Balfors, B., & Knol, W. C. (2007). Landscape ecological assessment: A tool for integrating biodiversity issues in strategic environmental assessment and planning. Journal of Environmental Management, 82, 457–470. doi: 10.1016/j.jenvman.2006.01.005.CrossRefGoogle Scholar
  67. Muscutt, A. D., & Withers, P. J. A. (1996). The phosphorus content of rivers in England and Wales. Water Research, 30, 1258–1268. doi: 10.1016/0043-1354(95)00290-1.CrossRefGoogle Scholar
  68. Ormerod, S. J., & Jüttner, I. (2009). Water quality effects on Welsh rivers: A polluted past, an uncertain future? In D. D. Williams, & C. Duigan (Eds), The rivers of Wales. Leiden: Backhys Publishers (in press).Google Scholar
  69. Passy, S. I. (2001). Spatial paradigms of lotic diatom distribution: A landscape ecology perspective. Journal of Phycology, 37, 370–378. doi: 10.1046/j.1529-8817.2001.037003370.x.CrossRefGoogle Scholar
  70. Perry, J., & Vanderklein, E. (1996). Water quality. Management of a natural resource. Oxford: Blackwell Science.Google Scholar
  71. Platt, N. J. (2002). Cardiff Bay barrage: Construction. Proceedings of the Institution of Civil Engineers – Water & Maritime Engineering, 154, 137–148. doi: 10.1680/maen. Scholar
  72. Platt, R. H., Rowntree, R. A., & Muick, P. C. (1994). The ecological city: Preserving and restoring urban biodiversity. Amherst: University of Massachusetts Press.Google Scholar
  73. Potapova, M. G., & Charles, D. F. (2003). Distribution of benthic diatoms in U.S. rivers in relation to conductivity and ionic composition. Freshwater Biology, 48, 1311–1328. doi: 10.1046/j.1365-2427.2003.01080.x.CrossRefGoogle Scholar
  74. Potapova, M. G., Charles, D. F., Ponader, K. C., & Winter, D. M. (2004). Quantifying species indicator values for trophic diatom indices: A comparison of approaches. Hydrobiologia, 517, 25–41. doi: 10.1023/B:HYDR.0000027335.73651.ea.CrossRefGoogle Scholar
  75. Poulíčková, A., Duchoslav, M., & Dokulil, M. (2004). Littoral diatom assemblages as bioindicators of lake trophic status: A case study from perialpine lakes in Austria. European Journal of Phycology, 39, 143–152. doi: 10.1080/0967026042000201876.CrossRefGoogle Scholar
  76. Reichardt, E. (1999). Zur Revision der Gattung Gomphonema. Die Arten um G. affine/insigne, G. angustatum/micropus, G. acuminatum sowie gomphonemoide Diatomeen aus dem Oberoligozän in Böhmen. Rugell: A.R.G. Gantner.Google Scholar
  77. Revitt, M., Shutes, B., & Scholes, L. (1999). The use of constructed wetlands for reducing the impacts of urban surface runoff on receiving water quality. In E. B. Ellis (Ed.), Impacts of urban growth on surface water and groundwater quality (IAHS Publication, 259). Wallingford: IAHS.Google Scholar
  78. Ruggiu, D., Luglié, A., Cattaneo, A., & Panzani, P. (1998). Paleoecological evidence for diatom response to metal pollution in Lake Orta (N. Italy). Journal of Paleolimnology, 20, 333–345. doi: 10.1023/A:1007929926526.Google Scholar
  79. Sayer, C. D., & Roberts, N. (2001). Establishing realistic restoration targets for nutrient-enriched shallow lakes: Linking diatom ecology and paleoecology at the Attenborough Ponds, U.K. Hydrobiologia, 448, 117–142. doi: 10.1023/A:1017597221052.CrossRefGoogle Scholar
  80. Schönfelder, I., Gelbrecht, J., Schönfelder, J., & Steinberg, C. E. W. (2002). Relationships between littoral diatoms and their chemical environment in northeastern German lakes and rivers. Journal of Phycology, 38, 66–82. doi: 10.1046/j.1529-8817.2002.01056.x.CrossRefGoogle Scholar
  81. Simkhada, B., Jüttner, I., & Chimonides, P. J. (2006). Diatoms in lowland ponds of Koshi Tappu, Eastern Nepal—relationships with chemical and habitat characteristics. International Revue of Hydrobiology, 91, 574–593. doi: 10.1002/iroh.200610852.CrossRefGoogle Scholar
  82. Smol, J. P. (2002). Pollution of lakes and rivers. A paleoenvironmental perspective. London: Arnold.Google Scholar
  83. Spirn, A. W. (1984). The granite garden. New York: Basic Books.Google Scholar
  84. Steinberg, C., & Schiefele, S. (1988). Biological indication of trophy and pollution of running waters. Z. Wasser-Abwasser-Forschung, 21, 227–234.Google Scholar
  85. Stenger-Kovács, C., Buczkó, K., Hajnal, É., & Padisák, J. (2007). Epiphytic, littoral diatoms as bioindicators of shallow lake trophic status: Trophic diatom index for lakes (TDIL) developed for Hungary. Hydrobiologia, 589, 141–154. doi: 10.1007/s10750-007-0729-z.CrossRefGoogle Scholar
  86. Stevenson, R. J. (1984). Epilithic and epipelic diatoms in the Sandusky River, with emphasis on species diversity and water pollution. Hydrobiologia, 114, 161–175.Google Scholar
  87. Stoermer, E. F., & Smol, J. P. (1999). The diatoms: Applications for the environmental and earth sciences. Cambridge: Cambridge University Press.Google Scholar
  88. Ter Braak, C. J. F., & Šmilauer, P. (2002). Canoco reference manual and CanoDraw for Windows user’s guide. Software for canonical community ordination (version 4.5). Wageningen, České Budějovice: Biometris.Google Scholar
  89. The Countryside Agency (2005). The countryside in and around towns. Wetherby: Countryside Agency Publications.Google Scholar
  90. Van Dam, H., Mertens, A., & Sinkeldam, J. (1994). A coded checklist and ecological indicator values of freshwater diatoms from The Netherlands. Netherlands Journal of Aquatic Ecology, 28, 117–133. doi: 10.1007/BF02334251.CrossRefGoogle Scholar
  91. Van Metre, P. C., Mahler, B. J., & Furlong, E. T. (2000). Urban sprawl leaves its PAH signature. Environmental Science & Technology, 34, 4064–4070. doi: 10.1021/es991007n.CrossRefGoogle Scholar
  92. Vaughan, I. P., Newberry, C., Hall, D. J., Liggett, J. S., & Ormerod, S. J. (2008). Evaluating large-scale effects of Bacillus thuringiensis var. israelensis on non-biting midges (Chironomidae) in a eutrophic urban lake. Freshwater Biology, 53, 2117–2128.doi: 10.1111/j.1365-2427.2008.02043.x.CrossRefGoogle Scholar
  93. Vincent, W. F., Gibbs, M. M., & Spigel, R. H. (1991). Eutrophication process regulated by a plunging river inflow. Hydrobiologia, 226, 51–63. doi: 10.1007/BF00007779.CrossRefGoogle Scholar
  94. Williams, A. T., & Simmons, S. L. (1999). Sources of riverine litter. The River Taff, South Wales, UK. Water, Air, and Soil Pollution, 112, 197–216. doi: 10.1023/A:1005000724803.CrossRefGoogle Scholar
  95. Winter, J. G., & Duthie, H. C. (2000). Epilithic diatoms as indicators of stream total N and total P concentrations. Journal of the North American Benthological Society, 19, 32–49. doi: 10.2307/1468280.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Ingrid Jüttner
    • 1
    Email author
  • P. James Chimonides
    • 2
  • Steve J. Ormerod
    • 3
  1. 1.Department of Biodiversity and Systematic BiologyNational Museum WalesCardiffUK
  2. 2.Department of ZoologyNatural History MuseumLondonUK
  3. 3.School of Biosciences, Catchment Research GroupCardiff UniversityCardiffUK

Personalised recommendations