Advertisement

Environmental Monitoring and Assessment

, Volume 161, Issue 1–4, pp 583–598 | Cite as

Development of a reference coastal wetland set in Southern New England (USA)

  • Cathleen Wigand
  • Richard McKinney
  • Marnita Chintala
  • Suzanne Lussier
  • James Heltshe
Article

Abstract

Various measures of plants, soils, and invertebrates were described for a reference set of tidal coastal wetlands in Southern New England in order to provide a framework for assessing the condition of other similar wetlands in the region. The condition of the ten coastal wetlands with similar hydrology and geomorphology were ranked from least altered to highly altered using a combination of statistical methods and best professional judgment. Variables of plants, soils, and invertebrates were examined separately using principal component analysis to reduce the multidimensional variables to principal component scores. The first principal component scores of each set of variables (i.e., plants, soil, invertebrates) significantly (p < 0.05) correlated with both residential land use and watershed nitrogen (N) loads. Using cumulative frequency diagrams, the first principal component scores of each plant, soil, and invertebrate data set were plotted, and natural breaks and best professional judgment were used to rank the first principal component scores among the sites. We weighted all three ranked components equally and calculated an overall salt marsh condition index by summing the three ranks and then transforming the index to a 0–1 scale. The overall salt marsh condition index for the reference coastal wetland set significantly correlated with the residential land use (R = − 0.87, p = 0.001) and watershed N loads (R = − 0.86, p = 0.001). Overall, condition deteriorated in salt marshes and their associated discharge streams when subjected to increasing watershed residential land use and N loads.

Keywords

Condition index Ecosystem service Erosion control Eutrophication Habitat value Reference set Salt marsh Tipping point Urbanization Water quality maintenance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Able, K. W., Hagan, S. M., & Brown, S. A. (2003). Mechanisms of marsh habitat alteration due to Phragmites: Response of young-of-the-year Mummichog (Fundulus heteroclitus) to treatment for Phragmites removal. Estuaries, 26, 484–494. doi: 10.1007/BF02823725.CrossRefGoogle Scholar
  2. Anderson, J. R., Hardy, E. E., & Roach, J. T. (1976). A land use and land cover classification system for use with remote sensor data. In Geological survey professional paper 964, a revision of the land use classification system as presented in US geological survey circular (Vol. 671). Washington, DC: United States Government Printing Office.Google Scholar
  3. Barbour, M. T., Gerritsen, J., Snyder, B. D., & Stribling, F. B. (1999). Rapid bioassessment protocols for use in streams and wadeable rivers: Periphyton, benthic macroinvertebrates, and fish (2nd ed.). Washington, D.C.: Office of Water, US Environmental Protection Agency. EPA 841-B-99-002.Google Scholar
  4. Benoit, L. K., & Askins, R. A. (1999). Impact of spread of Phragmites on the distribution of birds in Connecticut tidal marshes. Wetlands, 19, 194–208.Google Scholar
  5. Brawley, A. H., Warren, R. S., & Askins, R. A. (1998). Bird use of restoration and reference marshes within the barn island wildlife management area, Stonington, Connecticut, USA. Environmental Management, 22, 625–633. doi: 10.1007/s002679900134.CrossRefGoogle Scholar
  6. Brinson, M. M. (1993). A hydrogeomorphic classification for wetlands. Vicksburg: Waterways Experiment Station, US Army Corp of Engineers. Technical report WRP-DE-4.Google Scholar
  7. Brinson, M. M., & Rheinhardt, R. (1996). The role of reference wetlands in functional assessment and mitigation. Ecological Applications, 6, 69–76. doi: 10.2307/2269553.CrossRefGoogle Scholar
  8. Brooks, R. P., Wardrop, D. H., & Bishop, J. A. (2004). Assessing wetland condition on a watershed basis in the mid-Atlantic region using synoptic land-cover maps. Environmental Monitoring and Assessment, 94, 9–22. doi: 10.1023/B:EMAS.0000016876.63062.3d.CrossRefGoogle Scholar
  9. Carullo, M., Carlisle, B. K., & Smith, J. P. (2007). A New England rapid assessment method for assessing condition of estuarine marshes: A Boston Harbor, Cape Cod and Islands pilot study. Boston: Massachusetts Office of Coastal Zone Management.Google Scholar
  10. Chintala, M., Wigand, C., & Thursby, G. (2006). Comparison of Geukensia demissa populations in Rhode Island fringe salt marshes with varying nitrogen loads. Marine Ecology Progress Series, 320, 101–108. doi: 10.3354/meps320101.CrossRefGoogle Scholar
  11. Cole, M. L., Valiela, I., Kroeger, K. D., Fry, B., Tomasky, G. L., Cebrian, J., et al. (2004). Assessment of the isotopic method to indicate anthropogenic eutrophication in coastal lagoons. Journal of Environmental Quality, 33, 124–132.Google Scholar
  12. Collins, J. N., Stein, E. D., Sutula, M., Clark, R., Fetscher, A. E., Grenier, L., et al. (2008). California rapid assessment method (CRAM) for wetlands (ver. 5.0.2, 151 pp.). http://www.cramwetlands.org/documents/2008-09-30_CRAM%205.0.2.pdf.
  13. Darby, F. A., & Turner, R. E. (2008). Effects of eutrophication on salt marsh root and rhizome biomass accumulation. Marine Ecology Progress Series, 363, 63–70. doi: 10.3354/meps07423.CrossRefGoogle Scholar
  14. Davis, J. L., Nowicki, B., & Wigand, C. (2004). Denitrification in fringing salt marshes of Narragansett Bay, Rhode Island, USA. Wetlands, 24(4), 870–878. doi: 10.1672/0277-5212(2004)024[0870:DIFSMO]2.0.CO;2.CrossRefGoogle Scholar
  15. Deegan, L. A. (2002). Lessons learned: The effects of nutrient enrichment on the support of nekton by seagrass and salt marsh ecosystems. Estuaries, 25, 727–742. doi: 10.1007/BF02804902.CrossRefGoogle Scholar
  16. DeLaune, R. D., Nyman, J. A., & Patrick, W. H., Jr. (1994). Peat collapse, ponding and wetland loss in a rapidly submerging coastal marsh. Journal of Coastal Research, 10, 1021–1030.Google Scholar
  17. Donnelly, J. P., & Bertness, M. D. (2001). Rapid shoreward encroachment of salt marsh cordgrass in response to accelerated sea-level rise. Proceedings of the National Academy of Sciences of the United States of America, 98, 14218–14223. doi: 10.1073/pnas.251209298.CrossRefGoogle Scholar
  18. Evgenidou, A., & Valiela, I. (2002). Response of growth and density of a population of Geukensia demissa to land-derived nitrogen loading, in Waquoit Bay, Massachusetts. Estuarine, Coastal and Shelf Science, 55, 125–138. doi: 10.1006/ecss.2001.0891.CrossRefGoogle Scholar
  19. Fennessy, M. S., Jacobs, A. D., & Kentuala, M. E. (2007). An evaluation of rapid methods for assessing the ecological condition of wetlands. Wetlands, 27, 543–560. doi: 10.1672/0277-5212(2007)27[543:AEORMF]2.0.CO;2.CrossRefGoogle Scholar
  20. Findlay, C. S., & Bourdages, J. (2000). Response time of wetland biodiversity to road construction on adjacent lands. Conservation Biology, 14, 86–94. doi: 10.1046/j.1523-1739.2000.99086.x.CrossRefGoogle Scholar
  21. Findlay, C. S., & Houlahan, J. (1997). Anthropogenic correlates of species richness in southeastern Ontario wetlands. Conservation Biology, 11, 1000–1009. doi: 10.1046/j.1523-1739.1997.96144.x.CrossRefGoogle Scholar
  22. Findlay, S. E. G., Kiviat, E., Nieder, W. C., & Blair, E. A. (2002). Functional assessment of a reference wetland set as a tool for science, management and restoration. Aquatic Sciences, 64, 107–117. doi: 10.1007/s00027-002-8059-8.CrossRefGoogle Scholar
  23. Hartig, E. K., Gornitz, V., Kolker, A., Mushacke, F., & Fallon, D. (2002). Anthropogenic and climate-change impacts on salt marshes of Jamaica Bay, New York City. Wetlands, 22, 71–89. doi: 10.1672/0277-5212(2002)022[0071:AACCIO]2.0.CO;2.CrossRefGoogle Scholar
  24. Hilsenhoff, W. L. (1987). An improved biotic index of organic stream pollution. Great Lakes Entomologist, 20, 31–40.Google Scholar
  25. Holland, A. F., Sanger, D. M., Gawle, C. P., Lerberg, S. B., Santiago, M. S., Riekerk, G. H. M., et al. (2004). Linkages between tidal creek ecosystems and the landscape and demographic attributes of their watersheds. Journal of Experimental Marine Biology and Ecology, 298, 151–178. doi: 10.1016/S0022-0981(03)00357-5.CrossRefGoogle Scholar
  26. Howes, B. H., Weiskel, P. K., Geohringer, D. D., & Teal, J. M. (1996). Interception of freshwater and nitrogen transport from uplands to coastal waters: The role of saltmarshes. In K. F. Nordstrom & C. T. Roman (Eds.), Estuarine shores: Evolution, environments and human alterations (pp. 287–310). New York: Wiley.Google Scholar
  27. Jacobs, A., McLaughlin, E., & O’Brien, D. L. (2008). Mid-Atlantic tidal wetland rapid assessment method (Ver. 1.0). Delaware Department of natural Resources and Environmental Control, Division of Water Resources.Google Scholar
  28. Jordan, T. E., Andrews, M. P., Szuch, R. P., Whigham, D. F., Weller, D. E., & Jacobs, A. D. (2007). Comparing functional assessments of wetlands to measurements of soil characteristics and nitrogen processing. Wetlands, 27, 479–497. doi: 10.1672/0277-5212(2007)27[479:CFAOWT]2.0.CO;2.CrossRefGoogle Scholar
  29. Karr, J. R., & Chu, E. W. (1999). Restoring life in running waters: Better biological monitoring. Washington, DC: Island Press.Google Scholar
  30. Kentula, M. E. (2007). Foreword: Monitoring wetlands at the watershed scale. Wetlands, 27, 412–415. doi: 10.1672/0277-5212(2007)27[412:FMWATW]2.0.CO;2.CrossRefGoogle Scholar
  31. Lerberg, S. B., Holland, A. F., & Sanger, D. M. (2000). Responses of tidal creek macro-benthic communities to the effects of watershed development. Estuaries, 23, 838–853. doi: 10.2307/1353001.CrossRefGoogle Scholar
  32. Lussier, S. M., DaSilva, S. N., Charpentier, M., Heltshe, J. F., Cormier, S. M., Klemm, D. J., et al. (2008). The influence of suburban land use on habitat and biotic integrity of coastal Rhode Island streams. Environmental Management and Assessment, 139, 119–136. doi: 10.1007/s10661-007-9820-1.CrossRefGoogle Scholar
  33. Mack, J. J. (2001). Ohio rapid assessment for wetlands v. 5: User’s manual and forms. Ohio Environmental Protection Agency, Division of Surface Water, 401/Wetland Ecology Unit, Columbus, OH, USA. Technical report WET/2001-1. http://www.epa.state.oh.us/dsw/401/.
  34. McKinney, R., Nelson, W. G., Charpentier, M. A., & Wigand, C. (2001). Ribbed mussel nitrogen isotope signatures reflect nitrogen sources in coastal salt marshes. Ecological Applications, 11, 203–214. doi: 10.1890/1051-0761(2001)011[0203:RMNISR]2.0.CO;2.CrossRefGoogle Scholar
  35. McKinney, R. A., McWilliams, S. R., & Charpentier, M. A. (2006). Waterfowl-habitat associations during winter in an urban eastern North Atlantic estuary. Biological Conservation, 132, 239–249. doi: 10.1016/j.biocon.2006.04.002.CrossRefGoogle Scholar
  36. Morris, J. T., & Bradley, P. M. (1999). Effects of nutrient loading on the carbon balance of coastal wetland sediments. Limnology and Oceanography, 44, 699–702.Google Scholar
  37. Niering, W. A., & Warren, R. S. (1980). Vegetation patterns and processes in New England salt marshes. Bioscience, 30, 301–307. doi: 10.2307/1307853.CrossRefGoogle Scholar
  38. Nixon, S. W. (1982). The ecology of New England high salt marshes: A community profile. FFWS/OBS-81/55. Washington, DC: United States Fish and Wildlife Service.Google Scholar
  39. Oviatt, C. A., Nixon, S. W., & Garber, J. (1977). Variation and evaluation of costal salt marshes. Environmental Management, 1, 201–211.CrossRefGoogle Scholar
  40. Reinert, S. E., & Mello, M. J. (1995). Avian community structure and habitat use in a southern New England estuary. Wetlands, 15, 9–19.CrossRefGoogle Scholar
  41. Rheinhardt, R. D., Brinson, M. M., Christian, R. R., Miller, K. H., & Meyer, G. F. (2007). A reference-based framework for evaluating the ecological condition of stream networks in small watersheds. Wetlands, 27, 524–542. doi: 10.1672/0277-5212(2007)27[524:ARFFET]2.0.CO;2.CrossRefGoogle Scholar
  42. Roman, C. T., Jaworski, N., Short, F. T., Findlay, S., & Warren, S. (2000). Estuaries of the northeastern United States: Habitat and land use signatures. Estuaries, 23, 743–764. doi: 10.2307/1352997.CrossRefGoogle Scholar
  43. Rozas, L. P., & Reed, D. (1993). Nekton use of marsh-surface habitats in Louisiana (USA) deltaic salt marshes undergoing submergence. Marine Ecology Progress Series, 96, 147–157. doi: 10.3354/meps096147.CrossRefGoogle Scholar
  44. Shriver, W. G., Hodgman, T. P., Gibbs, J. P., & Vickery, P. D. (2004). Landscape context influences salt marsh bird diversity and area requirements in New England. Biological Conservation, 119, 545–553. doi: 10.1016/j.biocon.2004.01.016.CrossRefGoogle Scholar
  45. Smith, R. D., Ammann, A., Bartoldus, C., & Brinson, M. M. (1995). An approach for assessing wetland functions using hydrogeomorphic classification, reference wetlands, and functional indices (p. 90). Vicksburg: US Army Corps of Engineers, Waterways Experiment Station. Wetlands research technical report WRP-DE-9.Google Scholar
  46. Stoll, M. J., & Golet, F. C. (1983). Status of the seaside sparrow in Rhode Island. Audubon Society Report of Rhode Island, 17, 60–61.Google Scholar
  47. Sutula, M., Stein, E. D., Collins, J. N., Fetscher, A. E., & Clark, R. (2006). A practical guide for the development of a wetland assessment method: The California experience. Journal of the American Water Resources Association, 42(1), 157–175. doi: 10.1111/j.1752-1688.2006.tb03831.x.CrossRefGoogle Scholar
  48. Tober, J., Fritz, C., LaBrecque, E., Behr, P. J., & Valiela, I. (1996). Abundance, biomass, and species richness of fish communities in relation to nitrogen-loading rates of Waquoit Bay estuaries. The Biological Bulletin, 191, 321–322.Google Scholar
  49. Tober, J. D., Griffen, M., & Valiela, I. (2000). Growth and abundance of Fundulus heteroclitus and Menidia menidia in estuaries of Waquoit Bay, Massachusetts exposed to different rates of nitrogen loading. Aquatic Ecology, 34, 299–306. doi: 10.1023/A:1009982208382.CrossRefGoogle Scholar
  50. Turner, R. E., Swenson, E. M., & Milan, S. S. (2000). Organic and Inorganic contributions to vertical accretion in salt marsh sediments. In M. Weinstein & K. Kreeger (Eds.), Concepts and controversies in tidal marsh ecology (pp. 583–595). The Netherlands: Kluwer.Google Scholar
  51. US EPA (2006). Applications of elements of a state water monitoring and assessment program for wetlands. Office of Water’s Office of Wetlands, Oceans and Watersheds. http://www.epa.gov/owow/wetlands/monitor.
  52. Valiela, I., Collins, G., Kremer, J., Lajtha, K., Geist, M., Seely, B., et al. (1997). Nitrogen loading from coastal watersheds to receiving estuaries: New method and application. Ecological Applications, 7, 358–380. doi: 10.1890/1051-0761(1997)007[0358:NLFCWT]2.0.CO;2.CrossRefGoogle Scholar
  53. Valiela, I., Geist, M., McClelland, J., & Tomasky, G. (2000a). Nitrogen loading from watersheds to estuaries: Verification of the Waquoit Bay nitrogen loading model. Biogeochemistry, 49, 277–293. doi: 10.1023/A:1006345024374.CrossRefGoogle Scholar
  54. Valiela, I., Cole, M. L., McClelland, J., Hauxwell, J., Cebrian, J., & Joyce, S. B. (2000b). Role of salt marshes as part of coastal landscapes. In M. Weinstein & K. Kreeger (Eds.), Concepts and controversies in tidal marsh ecology (pp. 23–28). The Netherlands: Kluwer Academic.Google Scholar
  55. Wardrop, D. H., Kentula, M. E., Stevens, D. L., Jensen, S. F., & Brooks, R. P. (2007). Assessment of wetland condition: An example from the Upper Juniata watershed in central Pennsylvania, USQA. Wetlands, 27, 432–445. doi: 10.1672/0277-5212(2007)27[432:AOWITU]2.0.CO;2.CrossRefGoogle Scholar
  56. Warren, R. S., & Niering, W. A. (1993). Vegetation change on a northeast tidal marsh: Interaction of sea-level rise and marsh accretion. Ecology, 74, 96–103. doi: 10.2307/1939504.CrossRefGoogle Scholar
  57. Wigand, C. (2008a). Coastal salt marsh community change in Narragansett Bay in response to cultural eutrophication. In A. Desbonett & B. A. Costa-Pierce (Eds.), Science for ecosystem-based management (pp. 499–522). New York: Springer.CrossRefGoogle Scholar
  58. Wigand, C. (2008b). Examination of below-ground structure and soil respiration rates of stable and deteriorating salt marshes in Jamaica Bay (NY) (p. 6). The Tidal Exchange, (Newsletter of the New York–New Jersey Harbor Estuary Program). New York: New Jersey Harbor Estuary Program, New York.Google Scholar
  59. Wigand, C., McKinney, R., Chintala, M., Charpentier, M., & Groffman, P. (2004). Denitrification enzyme activity of fringe salt marshes in New England (USA). Journal of Environmental Quality, 33, 1144–1151.CrossRefGoogle Scholar
  60. Wigand, C., McKinney, R., Chintala, M., Charpentier, M., & Thursby, G. (2003). Relationships of nitrogen loadings, residential development, and physical characteristics with plant structure in New England salt marshes. Estuaries, 26(6), 1494–1504. doi: 10.1007/BF02803658.CrossRefGoogle Scholar
  61. Zedler, J. (2005). How compatible are biodiversity and ecosystem service goals? National Wetlands Newsletter, 27, 1.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Cathleen Wigand
    • 1
  • Richard McKinney
    • 1
  • Marnita Chintala
    • 1
  • Suzanne Lussier
    • 1
  • James Heltshe
    • 2
  1. 1.Office of Research and Development, National Health and Environmental Effects Research Laboratory, Atlantic Ecology DivisionUS EPANarragansettUSA
  2. 2.University of Rhode IslandKingstonUSA

Personalised recommendations