Environmental Monitoring and Assessment

, Volume 161, Issue 1–4, pp 217–227 | Cite as

Assessment of heavy metal contamination in the sediments of Nansihu Lake Catchment, China

  • Enfeng Liu
  • Ji Shen
  • Liyuan Yang
  • Enlou Zhang
  • Xianghua Meng
  • Jianjun Wang
Article

Abstract

At present, anthropogenic contribution of heavy metals far exceeds natural input in some aquatic sediment, but the proportions are difficult to differentiate due to the changes in sediment characters. In this paper, the metal (Al, Fe, K, Mg, Ca, Cr, Cu, Ni, and Zn) concentrations, grain size, and total organic carbon (TOC) content in the surface and core sediments of Nansihu Lake Catchment (the open lake and six inflow rivers) were determined. The chemical speciations of the metals (Al, Fe, Cr, Cu, Ni, and Zn) in the surface sediments were also analyzed. Approaches of factor analysis, normalized enrichment factor (EF) and the new non-residual fractions enrichment factor (KNRF) were used to differentiate the sources of the metals in the sediments, from detrital clastic debris or anthropogenic input, and to quantify the anthropogenic contamination. The results indicate that natural processes were more dominant in concentrating the metals in the surface and core sediments of the open lake. High concentration of Ca and deficiency of other metals in the upper layers of the sediment core were attributed to the input of carbonate minerals in the catchment with increasing human activities since 1980s. High TOC content magnified the deficiency of the metals. Nevertheless, the EF and KNRF both reveal moderate to significant anthropogenic contamination of Cr, Cu, Ni, and Zn in the surface sediments of Laoyun River and the estuary and Cr in the surface sediments of Baima River. The proportion of non-residual fractions (acid soluble, reducible, and oxidizable fractions) of Cr, Cu, Ni, and Zn in the contaminated sediments increased to 37–99% from the background levels less than 30%.

Keywords

Heavy metal Chemical speciation EF and KNRF Contamination Sediment Nansihu Lake 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abd El-Azim, H., & El-Moselhy, Kh. M. (2005). Determination and partitioning of metals in sediments along the Suez Canal by sequential extraction. Journal of Marine Systems, 56, 363–374. doi:10.1016/j.jmarsys.2004.12.001.CrossRefGoogle Scholar
  2. Abrahim, G. M. S., & Parker, R. J. (2008). Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environmental Monitoring and Assessment, 136, 227–238. doi:10.1007/s10661-007-9678-2.CrossRefGoogle Scholar
  3. Amin, B., Ismail, A., Arshad, A., Yap, C. K., & Kamarudin, M. S. (2009). Anthropogenic impacts on heavy metal concentrations in the coastal sediments of Dumai, Indonesia. Environmental Monitoring and Assessment, 148, 291–305. doi:10.1007/s10661-008-0159-z.CrossRefGoogle Scholar
  4. Barbanti, A., & Bothner, M. H. (1993). A procedure for partitioning bulk sediments into distinct grain-size fractions for geochemical analysis. Environmental Geology, 21, 3–13. doi:10.1007/BF00775044.CrossRefGoogle Scholar
  5. Çelo, V., Babi, D., Baraj, B., & Çullaj, A. (1999). An assessment of heavy metal pollution in the sediments along the Albanian Coast. Water, Air, and Soil Pollution, 111, 235–250. doi:10.1023/A:1005086208998.CrossRefGoogle Scholar
  6. Chen, Z. Y., Saito, Y., Kanai, Y., Wei, T. Y., Li, L. Q., Yao, H. S., et al. (2004). Low concentration of heavy metals in the Yangtze estuarine sediments, China: A diluting setting. Estuarine, Coastal and Shelf Science, 60, 91–100. doi:10.1016/j.ecss.2003.11.021.CrossRefGoogle Scholar
  7. Compilation Committee of Jining Water Conservancy (1997). Jining water conservancy records. Jining: Jining Municipal Bureau of Press.Google Scholar
  8. Gomez-Parra, A., Forja, J. M., DelValls, T. A., Saenz, I., & Riba, I. (2000). Early contamination by heavy metals of the Guadalquiver estuary after the Aznalcollar mining spill (SW Spain). Marine Pollution Bulletin, 40, 1115–1123. doi:10.1016/S0025-326X(00)00065-5.CrossRefGoogle Scholar
  9. Kartal, Ş., Aydın, Z., & Tokalıoǧlu, Ş. (2006). Fractionation of metals in street sediment samples by using the BCR sequential extraction procedure and multivariate statistical elucidation of the data. Journal of Hazardous Materials, 132, 80–89. doi:10.1016/j.jhazmat.2005.11.091.CrossRefGoogle Scholar
  10. Liaghati, T., Preda, M., & Cox, M. (2003). Heavy metal distribution and controlling factors within coastal plain sediments, Bells Creek Catchment, southeast Queensland, Australia. Environment International, 29, 935–948. doi:10.1016/S0160-4120(03)00060-6.CrossRefGoogle Scholar
  11. Liu, E. F., Shen, J., Yang, L. Y., Sun, Q. Y., & Wang, J. J. (2008). Phosphorus forms in the sediments of Nansihu Lake and its main inflow rivers. Geochimica, 37(3), 190–296.Google Scholar
  12. Liu, Q. H., & Xin, S. R. (1999). Analysis of soil and water loss in Shandong Province and the sustainable developmental measures. Chinese Journal of Soil Science, 30(2), 49–50.Google Scholar
  13. Nriagu, J. O., & Pacyna, J. M. (1988). Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 333, 134–139. doi:10.1038/333134a0.CrossRefGoogle Scholar
  14. Quevauviller, Ph., Rauret, G., López-Sánchez, J. F., Rubio, R., Ure, A., & Muntau, H. (1997). Certification of trace metal extractable contents in a sediment reference material (CRM 601) following a three-step sequential extraction procedure. The Science of the Total Environment, 205, 223–234. doi:10.1016/S0048-9697(97)00205-2.CrossRefGoogle Scholar
  15. Reimann, C., & de Caritat, P. (2005). Distinguishing between natural and anthropogenic sources for elements in the environment: Regional geochemical surveys versus enrichment factors. The Science of the Total Environment, 337, 91–107. doi:10.1016/j.scitotenv.2004.06.011.CrossRefGoogle Scholar
  16. Shen, J., Zhang, Z. K., Sun, Q. Y., Pan, H. X., Xia, W. L., Wu, Y. H., et al. (1998). Character and paleoenvironmental significance of the pigment and organic δ 13C in sediments of Nansihu Lake. Journal of Lake Science, 10(2), 17–22.Google Scholar
  17. Singh, K. P., Mohan, M., Singh, V. K., & Malik, M. (2005). Studies on distribution and fractionation of heavy metals in Gomati river sediment—A tributary of the Ganges, India. Journal of Hydrology (Amsterdam), 312, 14–27. doi:10.1016/j.jhydrol.2005.01.021.CrossRefGoogle Scholar
  18. Sutherland, R. A. (2000). Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environmental Geology, 39, 611–627. doi:10.1007/s002540050473.CrossRefGoogle Scholar
  19. USEPA (1996). Microwave assisted acid digestion of siliceous and organically based matrices, method 3052, Rev 0. In SW-846: Test methods for evaluating solid waste, physical/chemical methods. Washington, DC: US Environmental Protection Agency Office of Solid Waste, 3052-1–3052-20.Google Scholar
  20. Valdés, J., Vargas, G., Sifeddine, A., Ortlieb, L., & Guiñez, M. (2005). Distribution and enrichment evaluation of heavy metals in Mejillones Bay (23°S), Northern Chile: Geochemical and statistical approach. Marine Pollution Bulletin, 50(12), 1558–1568. doi:10.1016/j.marpolbul.2005.06.024.CrossRefGoogle Scholar
  21. Whiteley, J. D., & Pearce, N. J. G. (2003). Metal distribution during diagenesis in the contaminated sediments of Dulas Bay, Anglesey, N. Wales, UK. Applied Geochemistry, 18, 901–913. doi:10.1016/S0883-2927(02)00183-X.CrossRefGoogle Scholar
  22. Yang, L. Y., Shen, J., Zhang, Z. K., Jin, Z. D., & Zhu, Y. X. (2004). Human influence on heavy metal distribution in the upper lake Nansihu Sediments, Shandong Province, China. Chinese Journal of Geochemistry, 23, 177–185. doi:10.1007/BF02868982.CrossRefGoogle Scholar
  23. Yang, L. Y., Shen, J., Liu, E. F., & Ji, J. F. (2007). Characteristics of nutrients distribution from recent sediment in Lake Nansihu. Journal of Lake Science, 19(4), 390–396.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Enfeng Liu
    • 1
  • Ji Shen
    • 1
  • Liyuan Yang
    • 2
  • Enlou Zhang
    • 1
  • Xianghua Meng
    • 2
  • Jianjun Wang
    • 1
  1. 1.State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and LimnologyChinese Academy of SciencesNanjingPeople’s Republic of China
  2. 2.School of City DevelopmentUniversity of JinanJinanChina

Personalised recommendations