Environmental Monitoring and Assessment

, Volume 161, Issue 1–4, pp 45–59 | Cite as

Evaluating the urban climate of a typically tropical city of northeastern Brazil

  • Vicente de Paulo Rodrigues da Silva
  • Pedro Vieira de Azevedo
  • Robson Souto Brito
  • João Hugo Baracuy da Cunha Campos
Article

Abstract

This study attempted to assess a bioclimate index and the occurrence of an urban heat island in the city of Campina Grande, northeastern Brazil, using data taken from mobile measurements and Automatic Weather Stations (AWS). The climate data were obtained during two representative months, one for the dry season (November 2005) and one for the rainy season (June 2006) at seven points in an urban area. Ten-minute air temperatures recorded by an AWS installed in urban areas were compared to those from a similar station located in a suburban area to assess the urban heat island (UHI). The data were collected using a 23X data logger (Campbell Scientific, Inc.) programmed for collecting data every second. The thermal discomfort level was analyzed by Thom’s discomfort index (DI), and an analysis of variance was applied for assessing if there was any statistically significant difference at the 1% and 5% significance level of thermal comfort among points. Mann–Kendall statistical test was used for identifying possibly significant trends in a time series for air temperature, relative humidity, and class A pan evaporation for the city of Campina Grande. The present study found UHI intensities of 1.48°C and − 0.7°C for the months taken as representative of the dry and rainy seasons, respectively. Summer in the city has partially comfortable conditions while the winter is fully comfortable. There are significant changes in DI hourly values between seasons. Only during the rainy season did all points of the city have a comfortable condition until 8:19 h, at which time they become partially comfortable for the rest of the day. Results indicated that there was a 1.5°C increase in air temperature and a 7.2% reduction in relative humidity throughout the analyzed time series. The DI also showed a statistically significant increasing trend (Mann–Kendall test, p < 0.01) for the dry and rainy seasons and annual period of approximately 1°C in the last 41 years in the city of Campina Grande.

Keywords

Discomfort index Climatic variables Heat island Mann–Kendal test Urban area 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burian, S. J., & Shepherd, J. M. (2005). Effect of urbanization on the diurnal rainfall pattern in Houston. Hydrological Processes, 19, 1089–1103. doi:10.1002/hyp.5647.CrossRefGoogle Scholar
  2. Deosthali, V. (1999). Assessment of impact or urbanization on climate: An application of bio-climate index. Atmospheric Environment, 33, 4125–4133. doi:10.1016/S1352-2310(99)00154-5.CrossRefGoogle Scholar
  3. Giridharan, R., Lau, S. S. Y., Ganesan, S., & Givoni, B. (2007). Urban design factors influencing heat island intensity in high-rise high-density environments of Hong Kong. Building and Environment, 42, 3669–3684. doi:10.1016/j.buildenv.2006.09.011.CrossRefGoogle Scholar
  4. Goldreich, Y. (1995). Urban climate studies in Israel—A review. Atmospheric Environment, 29, 467–478. doi:10.1016/1352-2310(94)00277-R.CrossRefGoogle Scholar
  5. Hirsch, R. M., Slack, J. R., & Smith, R. A. (1982). Techniques of trend analysis for monthly water quality data. Water Resources Research, 18, 107–121. doi:10.1029/WR018i001p00107.CrossRefGoogle Scholar
  6. Ichinose, T., Shimodozono, K., & Hanaki, K. (1999). Impact of anthropogenic heat on urban climate in Tokyo. Atmospheric Environment, 33, 3897–3909. doi:10.1016/S1352-2310(99)00132-6.CrossRefGoogle Scholar
  7. Kendall, M. G. (1975). Rank correlation measures (220 pp.). London: Charles Griffin.Google Scholar
  8. Kolokotroni, M., Giannitsaris, I., & Watkins, R. (2006). The effect of the London heat island on building summer cooling demand night ventilation strategies. Solar Energy, 80, 383–392. doi:10.1016/j.solener.2005.03.010.CrossRefGoogle Scholar
  9. Kolokotroni, M., Zhang, Y., & Watkins, R. (2007). The London Heat Island and building cooling design. Solar Energy, 81, 102–110. doi:10.1016/j.solener.2006.06.005.CrossRefGoogle Scholar
  10. Lazar, R., & Podesser, A. (1999). An urban climate analysis of Graz and its significance for urban planning in the tributary valleys east of grazy (Austria). Atmospheric Environment, 33, 4195–4209. doi:10.1016/S1352-2310(99)00162-4.CrossRefGoogle Scholar
  11. Mann, H. B. (1945). Nonparametric tests against trend. Econometrica, 13, 245–259. doi:10.2307/1907187.CrossRefGoogle Scholar
  12. Mather, J. R. (1978). Climatology: Fundamentals and applications. USA: McGraw-Hill, 1974.Google Scholar
  13. Modarres, R., & Silva, V. P. R. (2007). Rainfall trends in arid and semi-arid regions of Iran. Journal of Arid Environments, 70, 344–355. doi:10.1016/j.jaridenv.2006.12.024.
  14. Oke, T. R. (1976). The distinction between canopy and boundary-layer urban heat islands. Atmosphere (Toronto), 14, 268–277.Google Scholar
  15. Oke, T. R. (1978). Boundary layer climates (1st ed., p. 372). London: Mathuen.Google Scholar
  16. Oke, T. R. (1979). Review of urban climatology, 1973–1976. World Meteorological Organization Technical Note No. 169. Geneva: Secretariat of the World Meteorological Organization.Google Scholar
  17. Rosenzweig, C., Solecki, W. D., Parshall, L., Chopping, M., Pope, G., & Goldberg, R. (2005). Characterizing the urban heat island in current and future climates in New Jersey. Environmental Hazards, 6, 51–62.CrossRefGoogle Scholar
  18. Sarrat, C., Lemonsu, A., Masson, V., & Guedalia, D. (2006). Impact of urban heat island on regional atmospheric pollution. Atmospheric Environment, 40, 1743–1758. doi:10.1016/j.atmosenv.2005.11.037.CrossRefGoogle Scholar
  19. Scherer, D., Fehrenbach, U., Beha, H. D., & Parlo, W. E. (1999). Improved concepts and methods in analysis and evaluation of the urban climate for optimizing urban planning processes. Atmospheric Environment, 33, 4185–4193. doi:10.1016/S1352-2310(99)00161-2.CrossRefGoogle Scholar
  20. Silva, F. A. S. (1996). The ASSISTAT Software: Statistical assistance. In: International Conference on Computers in Agriculture (Vol. 1, pp. 298–298). Transactions of the ASAE. American Society of Agricultural Engineers.Google Scholar
  21. Silva, V. P. R. (2004). On climate variability in Northeast Brazil. Journal of Arid Environments, 58, 575–596. doi:10.1016/j.jaridenv.2003.12.002.CrossRefGoogle Scholar
  22. Stanhill, G., & Ianetz, A. (1996). Long term trends and spatial variation of global irradiance in Israel. Tellus, 49, 112–122.Google Scholar
  23. Stathopoulos, T., Wu, H., & Zacharias, J. (2004). Outdoor human comfort in an urban climate. Building and Environment, 39, 297–305. doi:10.1016/j.buildenv.2003.09.001.CrossRefGoogle Scholar
  24. Taha, H. (1997). Urban climate and heat islands: Albedo, evapotranspiration, and anthropogenic heat. Energy and Building, 25, 99–103. doi:10.1016/S0378-7788(96)00999-1.CrossRefGoogle Scholar
  25. Thom, E. (1959). The discomfort index. Weatherwise, 12, 57–60.Google Scholar
  26. Tumanov, S., Stan-Sion, A., Lupu, A., Soci, C., & Oprea, C. (1999). Influences of the city of Bucharest on weather and climate parameters. Atmospheric Environment, 33, 4173–4183. doi:10.1016/S1352-2310(99)00160-0.CrossRefGoogle Scholar
  27. Velazquez-Lozada, A., Gonzalez, A. E., & Winter, A. (2006). Urban heat island effect analysis for San Juan, Puerto Rico. Atmospheric Environment, 40, 1731–1741. doi:10.1016/j.atmosenv.2005.09.074.CrossRefGoogle Scholar
  28. Voogt, J. A., & Oke, T. R. (2003). Thermal remote sensing of urban climates. Remote Sensing of Environment, 86, 370–384. doi:10.1016/S0034-4257(03)00079-8.CrossRefGoogle Scholar
  29. Yu, P. S., Yang, T. C., & Wu, C. K. (2002). Impact of climate change on water resources in southern Taiwan. Journal of Hydrology (Amsterdam), 260, 161–175. doi:10.1016/S0022-1694(01)00614-X.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Vicente de Paulo Rodrigues da Silva
    • 1
  • Pedro Vieira de Azevedo
    • 1
  • Robson Souto Brito
    • 1
  • João Hugo Baracuy da Cunha Campos
    • 1
  1. 1.Center of Technology and Natural Resources/Academic Unity of Atmospheric SciencesFederal University of Campina GrandeCampina GrandeBrazil

Personalised recommendations