Advertisement

Environmental Monitoring and Assessment

, Volume 161, Issue 1–4, pp 11–27 | Cite as

Development of a low-cost system for measuring conditional time-averaged gradients of SO2 and NH3

  • D. Famulari
  • D. Fowler
  • E. Nemitz
  • K. J. Hargreaves
  • R. L. Storeton-West
  • G. Rutherford
  • Y. S. Tang
  • M. A. Sutton
  • K. J. Weston
Article

Abstract

A conditional time-averaged gradient (COTAG) system has been developed to provide direct long-term (weekly to monthly) average flux gradient measurements for a range of trace gases, between land and atmosphere. Over daily periods, atmospheric conditions can range from high stability, where the vertical gradients of ambient concentration are enhanced due to very small diffusivity, to highly unstable conditions, in which concentration gradients are small due to the intense turbulent activity of the surface layer. The large vertical gradients generated by high stability would bias the estimate of the actual flux: to avoid this, the COTAG system samples conditionally, within a carefully refined range of stability. A comparison with a continuous flux gradient system suggested that the removal of stable conditions from the sampling period does not substantially modify the evaluation of the long-term fluxes.

Keywords

COTAG Conditional sampling Deposition fluxes Low-cost deposition monitoring NH3 SO2 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arya, S. P. (1999). Air pollution meteorology and dispersion. Oxford: Oxford University Press.Google Scholar
  2. Baumgardner, R. E. Jr., Lavery, T. F., Rogers, C. M., & Isil, S. S. (2001). Estimates of the atmospheric deposition of sulfur and nitrogen species: Clean air status and trends network, 1990–2000. Environmental Science and Technology, 36(12), 2614–2629.CrossRefGoogle Scholar
  3. Buijsman, E., Aben, J. M. M., Van Elzakker, B. G., & Mennen, M. G. (1998). An automatic atmospheric ammonia network in the Netherlands set-up and results. Atmospheric Environment, 32(3), 317–324. doi: 10.1016/S1352-2310(97)00233-1.CrossRefGoogle Scholar
  4. Dellwik, E., & Jensen, N. O. (2005). Flux profile relationships over a fetch limited beech forest. Boundary-layer meteorology. Springer Netherlands, 115(2), 179–204.Google Scholar
  5. Duyzer, J., Nijenhuis, B., & Weststrate, H. (2001). Monitoring and modelling of ammonia concentrations and deposition in agricultural areas of the Netherlands. Water Air and Soil Pollution Focus, 1, 131–144. doi: 10.1023/A:1013186517683.CrossRefGoogle Scholar
  6. Erisman, J. W., Mennen, M. G., Fowler, D., Flechard, C. R., Spindler, G., Gruner, A., et al. (1998). Deposition monitoring in Europe. Environmental Monitoring and Assessment, 53(2), 279–295. doi: 10.1023/A:1005818820053.CrossRefGoogle Scholar
  7. Erisman, J. W., Hogenkamp, J. E. M., Van Putten, E. M., Uiterwijk, J. W., Kemkers, E., Wiese, C. J., et al. (1999). Long-term continuous measurements of SO2 dry deposition over the Speulder forest. Water, Air, and Soil Pollution, 109(4), 237–262. doi: 10.1023/A:1005097722854.CrossRefGoogle Scholar
  8. Erisman, J. W., Hensenand, A., Fowler, D., Flechard, C. R., Grnerand, A., Spindler, G., et al. (2001). Dry deposition monitoring in Europe. Water Air and Soil Pollution Focus, 1(5), 39–48. doi: 10.1023/A:1013105727252.CrossRefGoogle Scholar
  9. Erisman, J. W., Hensen, A., Mosquera, J., Sutton, M., & Fowler, D. (2005). Deposition monitoring networks: What monitoring is required to give reasonable estimates of ammonia/ammonium? Environmental Pollution, 135(3), 419–431. doi: 10.1016/j.envpol.2004.11.015.CrossRefGoogle Scholar
  10. Flechard, C. R., & Fowler, D. (1998a). Atmospheric ammonia at a moorland site. I: The meteorological control of ambient ammonia concentrations and the influence of local sources. Quarterly Journal of the Royal Meteorological Society, 124(547), 733–757. doi: 10.1002/qj.49712454705.CrossRefGoogle Scholar
  11. Flechard, C. R., & Fowler, D. (1998b). Long term measurements of ammonia fluxes. Edinburgh: Life report, CEH.Google Scholar
  12. Foken, T., Gockede, M., Mauder, M., Mahrt, L., Amiro, B., & Munger, W. (2004). Post-field data quality control. In X. Lee, W. J. Massman, & B. Law (Eds.), Handbook of micrometeorology (pp. 181–208). Dordrecht: Kluwer.Google Scholar
  13. Fowler, D., Coyle, M., Flechard, C., Hargreaves, K. J., Nemitz, E., Storeton-West, R., et al. (2001). Advances in micrometeorological methods for the measurement and interpretation of gas and particle nitrogen fluxes. Plant and Soil, 228(1), 117–129. doi: 10.1023/A:1004871511282.CrossRefGoogle Scholar
  14. Hansen, B., Wyers, G. P., Nornberg, P., Nemitz, E., & Sutton, M. A. (1999). Intercalibration of a passive wind-vane flux sampler against a continuous flow denuder for the measurements of atmospheric ammonia concentrations and surface exchange fluxes. Atmospheric Environment, 33(27), 4379–4388. doi: 10.1016/S1352-2310(99)00224-1.CrossRefGoogle Scholar
  15. Kaimal, J. C., & Finnigan, J. J. (1994). Atmospheric boundary layer flows (2nd ed.). New York: Oxford University Press.Google Scholar
  16. Kaimal, J. C., & Gaynor, J. E. (1991). Another look at sonic thermometry. Boundary-Layer Meteorology, 56, 401–410. doi: 10.1007/BF00119215.CrossRefGoogle Scholar
  17. Milford, C., Theobald, M. R., Nemitz, E., & Sutton, M. A. (2001). Dynamics of ammonia exchange in response to cutting and fertilising in an intensively-managed grassland. Water Air and Soil Pollution Focus, 1, 167–176. doi: 10.1023/A:1013142802662.CrossRefGoogle Scholar
  18. Monin, A. S., & Obukhov, A. M. (1954). Basic laws of turbulent mixing in the ground layer of the atmosphere. Trudy Geologicheskogo instituta/Akademiia nauk SSSR, 151, 163–187.Google Scholar
  19. Mosquera, J., Hensen, A., Van Den Bulk, W. C. M., Vermeulen, A. T., & Erisman, J. W. (2001). Long term NH3 flux measurements above grassland in the Netherlands. Water Air and Soil Pollution Focus, 1, 203–212. doi: 10.1023/A:1013159207205.CrossRefGoogle Scholar
  20. Nemitz, E., Flynn, M., Williams, P. I., Milford, C., Theobald, M. R., Blatter, A., et al. (2001). A relaxed eddy accumulation system for the automated measurement of atmospheric ammonia fluxes. Water Air and Soil Pollution Focus, 1, 189–202. doi: 10.1023/A:1013103122226.CrossRefGoogle Scholar
  21. Oms, M. T., Jongejan, P. A. C., Veltkamp, A. C., Wyers, G. P., & Slanina, J. (1996). Continuous monitoring of atmospheric HCl, HNO2, HNO3, and SO2, by wet-annular denuder air sampling with on-line chromatographic analysis. International Journal of Environmental Analytical Chemistry, 62(3), 207–218. doi: 10.1080/03067319608028134.CrossRefGoogle Scholar
  22. Panofsky, H. (1963). Determination of stress from wind and temperature measurements. Quarterly Journal of the Royal Meteorological Society, 89, 85–94.CrossRefGoogle Scholar
  23. Schjoerring, J. K., Sommer, S. G., & Ferm, M. (2001). A simple passive sampler for measuring ammonia emission in the field. Water Air and Soil Pollution Focus, 1, 13–24.Google Scholar
  24. Schmid, H. P. (2002). Footprint modeling for vegetation atmosphere exchange studies: A review and perspective. Agricultural and Forest Meteorology, 113, 159–183. doi: 10.1016/S0168-1923(02)00107-7.CrossRefGoogle Scholar
  25. Sickles, J. E., & Shadwick, D. S. (2001). Correction factors for covariance between concentration and deposition velocity on CASTNet HNO3 deposition estimates. Water Air and Soil Pollution Focus, 1, 29–38. doi: 10.1023/A:1013157728161.CrossRefGoogle Scholar
  26. Stull, R. B. (1988). An introduction to boundary layer meteorology. Dordrecht: Kluwer Academic.Google Scholar
  27. Sutton, M., Fowler, D., & Moncrieff, J. (1993). The exchange of atmospheric ammonia with vegetated surfaces. I: Unfertilized vegetation. Quarterly Journal of the Royal Meteorological Society, 119, 1023–1045. doi: 10.1002/qj.49711951309.CrossRefGoogle Scholar
  28. Sutton, M. A., Nemitz, E., Milford, C., Fowler, D., Moreno, J., San Jos, R., et al. (2000). Micrometeorological measurements of net ammonia fluxes over oilseed rape during two vegetation periods. Agricultural and Forest Meteorology, 105(4), 351–369. doi: 10.1016/S0168-1923(00)00203-3.CrossRefGoogle Scholar
  29. Sutton, M. A., Tang, Y. S., Miners, B., & Fowler, D. (2001). A new diffusion denuder system for long-term, regional monitoring of atmospheric ammonia and ammonium. Water Air and Soil Pollution Focus, 1, 145–156. doi: 10.1023/A:1013138601753.CrossRefGoogle Scholar
  30. Thom, A. S. (1975). Momentum, mass and heat exchange of plant communities. In J. L. Monteith (Ed.), Vegetation and the atmosphere (Vol. 1, pp. 55–79). London: Academic.Google Scholar
  31. Webb, E. (1970). Profile relationships: The log-linear range and extension to strong stability. Quarterly Journal of the Royal Meteorological Society, 96, 67–90. doi: 10.1002/qj.49709640708.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • D. Famulari
    • 1
  • D. Fowler
    • 1
  • E. Nemitz
    • 1
  • K. J. Hargreaves
    • 1
  • R. L. Storeton-West
    • 1
  • G. Rutherford
    • 1
  • Y. S. Tang
    • 1
  • M. A. Sutton
    • 1
  • K. J. Weston
    • 2
  1. 1.Centre for Ecology and Hydrology-EdinburghPenicuikUK
  2. 2.School of Geosciences, Institute of Atmospheric and Environmental ScienceThe University of EdinburghEdinburghUK

Personalised recommendations