Chromium speciation in groundwater of a tannery polluted area of Chennai City, India

  • A. Ramesh Kumar
  • P. RiyazuddinEmail author


Chromium speciation in groundwater of a tannery polluted area was investigated for the distribution of chromium species and the influence of redox couples such as Fe(III)/Fe(II) and Mn(IV)/Mn(II). Speciation analysis was carried out by ammonium pyrolidinedithiocarbamate (APDC)–methylisobutylketone (MIBK) procedure. The groundwater samples were analyzed for Cr(III), Cr(VI), and Cr(III)-organic complexes. The APDC could not extract the Cr(III)-organic complexes, but HNO3 digestion of the groundwater samples released the Cr(III)-organic complexes. The groundwater of the area is relatively oxidizing with redox potential (E h) and dissolved oxygen (DO) ranged between 65 and 299 mV and 0.25 and 4.65 mg L − 1, respectively. The Fe(II) reduction of Cr(VI) was observed in some wells, but several wells that had Fe(II)/Cr(VI) concentrations more than the stoichiometric ratio (3:1) of the reduction reaction also had appreciable concentration of Cr(VI). This could partly be due to the oxidation of Fe(II) to Fe(III) by DO. It appears that the occurrence of Mn more than the Fe(II) concentration was also responsible for the presence of Cr(VI). Other reasons could be the Fe(II) complexation by organic ligands and the loss of reducing capacity of Fe(II) due to aquifer materials, but could not be established in this study.


Chromium(III) Chromium(VI) Cr(III)-organic complexes Groundwater pollution Speciation Tannery pollution 


  1. APHA-AWWA-WEF (1998). Standard methods for the examination of water and wastewater. Washington, DC.Google Scholar
  2. Ball, J. W., & Izbicki, J. A. (2004). Occurrence of hexavalent chromium in groundwater in the western Mojave desert, California. Applied Geochemistry, 19, 1123–1135. doi: 10.1016/j.apgeochem.2004.01.011.CrossRefGoogle Scholar
  3. Buerge, I. J., & Hug, S. J. (1997). Kinetics and pH dependence of chromium(VI) reduction by iron(II). Environmental Science & Technology, 31, 1426–1432. doi: 10.1021/es960672i.CrossRefGoogle Scholar
  4. Buerge, I. J., & Hug, S. J. (1998). Influence of organic ligands on chromium(VI) reduction by iron(II). Environmental Science & Technology, 32, 2092–2099. doi: 10.1021/es970932b.CrossRefGoogle Scholar
  5. Chandra, P., Sinha, S., & Rai, U. N. (1997). Bioremidiation of chromium from water and soil by vascular aquatic plants. ACS Symposium Series. American Chemical Society, 664, 274–282.Google Scholar
  6. Chwastowska, J., Skwara, W., Sterlinska, E., & Pszonicki, L. (2005). Speciation of chromium in mineral waters and salinas by solid-phase extraction and graphite furnace atomic absorption spectrometry. Talanta, 66, 1345–1349. doi: 10.1016/j.talanta.2005.01.055.CrossRefGoogle Scholar
  7. Davis, A., Kempton, J. H., Nicholson, A., & Yare, B. (1994). Groundwater transport of arsenic and chromium at a historical tannery, Woburn, Massachusetts, USA. Applied Geochemistry, 9, 569–582. doi: 10.1016/0883-2927(94)90019-1.CrossRefGoogle Scholar
  8. Dissanayake, C. B. (1991). Humic substances and chemical speciation—implications on environmental geochemistry and health. The International Journal of Environmental Studies, 37, 247–258. doi: 10.1080/00207239108710637.CrossRefGoogle Scholar
  9. Eary, L. E., & Rai, D. (1987). Kinetics of Cr(III) oxidation to Cr(VI) by reaction with manganese dioxide. Environmental Science & Technology, 21, 1187–1193. doi: 10.1021/es00165a005.CrossRefGoogle Scholar
  10. Eary, L. E., & Rai, D. (1988). Chromate removal from aqueous wastes by reduction with ferrous iron. Environmental Science & Technology, 22, 972–977. doi: 10.1021/es00173a018.CrossRefGoogle Scholar
  11. Fendorf, S. E., & Li, G. (1996). Kinetics of chromate reduction by ferrous ion. Environmental Science & Technology, 30, 1614–1617. doi: 10.1021/es950618m.CrossRefGoogle Scholar
  12. Fendorf, S. E., & Zasoski, R. J. (1992). Chromium(III) oxidation by δ-MnO2.1. Characterization. Environmental Science & Technology, 26, 79–85. doi: 10.1021/es00025a006.CrossRefGoogle Scholar
  13. Fruchter, J. S., Cole, C. R., Williams, M. D., Vermeul, V. R., Amonette, J. E., Szecsody, J. E., et al. (2000). Creation of a subsurface permeable treatment zone for aqueous chromate contamination using in situ redox manipulation. Ground Water Monitoring and Remediation, 20, 66–77. doi: 10.1111/j.1745-6592.2000.tb00267.x.CrossRefGoogle Scholar
  14. Gonzalez, A. R., Ndung, K., & Flegal, A. R. (2005). Natural occurrence of hexavalent chromium in the Aromas red sands aquifer, California. Environmental Science & Technology, 39, 5505–5511. doi: 10.1021/es048835n.CrossRefGoogle Scholar
  15. Hosseini, M. S., & Sarab, A. R. R. (2007). Chromium(III)/chromium(VI) speciation in water samples by extractive separation using Amberlite CG-50 and final determination by FAAS. International Journal of Environmental Analytical Chemistry, 87, 375–385. doi: 10.1080/03067310601068866.CrossRefGoogle Scholar
  16. Icopini, G. A., & Long, D. T. (2002). Speciation of aqueous chromium by use of solid phase extraction in the field. Environmental Science & Technology, 36, 2994–2999. doi: 10.1021/es015655u.CrossRefGoogle Scholar
  17. Jan, T. K., & Young, D. R. (1978). Determination of microgram amounts of some transition metals in seawater by methyl isobutyl ketone–nitric acid successive extraction and flameless atomic absorption spectrometry. Analytical Chemistry, 50, 1250–1253. doi: 10.1021/ac50031a014.CrossRefGoogle Scholar
  18. Jardine, P. M., Fendorf, S. E., Mayes, M. A., Larsen, I. L., Brooks, S. C., & Bailey, W. B. (1999). Fate and transport of hexavalent chromium in undisturbed heterogeneous soil. Environmental Science & Technology, 33, 2939–2944. doi: 10.1021/es981211v.CrossRefGoogle Scholar
  19. Kotas, J., & Stasicka, Z. (2000). Chromium occurrence in the environment and methods of its speciation. Environmental Pollution, 107, 263–283. doi: 10.1016/S0269-7491(99)00168-2.CrossRefGoogle Scholar
  20. Kozuh, N., Stupar, J., & Gorenc, B. (2000). Reduction and oxidation processes of chromium in soils. Environmental Science & Technology, 34, 112–119. doi: 10.1021/es981162m.CrossRefGoogle Scholar
  21. Lin, C.-J. (2002). The chemical transformations of chromium in natural waters—a model study. Water, Air, and Soil Pollution, 139, 137–158. doi: 10.1023/A:1015870907389.CrossRefGoogle Scholar
  22. Lindberg, R. D., & Runnels, D. D. (1984). Groundwater redox reactions: An analysis of equilibrium state applied to Eh measurements and geochemical modeling. Science, 225, 925–927. doi: 10.1126/science.225.4665.925.CrossRefGoogle Scholar
  23. Loyaux-Lawniczak, S., Lecomte, P., & Ehrhardt, J. J. (2001). Behavior of hexavalant chromium in a polluted groundwater: Redox processes and immobilization in soils. Environmental Science & Technology, 35, 1350–1357. doi: 10.1021/es001073l.CrossRefGoogle Scholar
  24. Ludwig, R. D., Su, C., Lee, T. R., Wilkin, R. T., & Sass, B. M. (2008). In situ source treatment of Cr(VI) using a Fe(II)-based reductant blend: Long term monitoring and evaluation. Journal of Environmental Engineering, 134, 651–658. doi: 10.1061/(ASCE)0733-9372(2008)134:8(651).CrossRefGoogle Scholar
  25. Magnusson, B., & Westerlund, S. (1981). Solvent extraction combined with back-extraction for trace metal determinations by atomic absorption spectrometry. Analytica Chimica Acta, 131, 63–72. doi: 10.1016/S0003-2670(01)93534-2.CrossRefGoogle Scholar
  26. Mukhopadhyay, B., Sundquist, J., & White, E. (2007). Hydrogeochemical controls on removal of Cr(VI) from contaminated groundwater by anion exchange. Applied Geochemistry, 22, 370–387. doi: 10.1016/j.apgeochem.2006.09.009.CrossRefGoogle Scholar
  27. Nakayama, E. (1981). Chemical speciation of chromium in sea water, Part 3. The determination of chromium species. Analytica Chimica Acta, 131, 247–254. doi: 10.1016/S0003-2670(01)93556-1.CrossRefGoogle Scholar
  28. Narin, I., Soylak, M., Kayakirilmaz, K., Elci, E., & Dogan, M. (2002). Speciation of Cr(III) and Cr(VI) in tannery wastewater and sediment samples on Ambersorb 563 resin. Analytical Letters, 35, 1437–1452. doi: 10.1081/AL-120006679.CrossRefGoogle Scholar
  29. Osaki, S., Osaki, T., Hirashima, N., & Takashima, Y. (1983). The effect of organic matter and colloidal particles on the determination of chromium(VI) in natural waters. Talanta, 30, 523–526. doi: 10.1016/0039-9140(83)80122-2.CrossRefGoogle Scholar
  30. Pantsar-Kallio, M., Satu-Pia, R., & Oksanen, M. (2001). Interactions of soil components and their effects on speciation of chromium in soils. Analytica Chimica Acta, 439, 9–17. doi: 10.1016/S0003-2670(01)00840-6.CrossRefGoogle Scholar
  31. Parks, J. L., McNeill, L., Frey, M., Eaton, A. D., Haghani, A., Ramierez, L., & Edwards, M. (2004). Determination of total chromium in environmental water samples. Water Research, 38, 2827–2838. doi: 10.1016/j.watres.2004.04.024.CrossRefGoogle Scholar
  32. Pettine, M., D’ottone, L., Campanella, L., Millero, F. J., & Passino, R. (1998). The reduction of chromium(VI) by iron(II) in aqueous solutions. Geochimica et Cosmochimica Acta, 62, 1509–1519. doi: 10.1016/S0016-7037(98)00086-6.CrossRefGoogle Scholar
  33. Richard, F. C., & Bourg, A. C. M. (1991). Aqueous geochemistry of chromium: A review. Water Research, 25, 807–816. doi: 10.1016/0043-1354(91)90160-R.CrossRefGoogle Scholar
  34. Robles-Camacho, J., & Armienta, M. A. (2000). Natural chromium contamination of groundwater at Leon Valley, Mexico. Journal of Geochemical Exploration, 68, 167–181. doi: 10.1016/S0375-6742(99)00083-7.CrossRefGoogle Scholar
  35. Rubio, R., Sahuquillo, A., Rauret, G., & Quevauviller, P. (1992). Determination of chromium in environmental and biological samples by atomic absorption spectroscopy: A review. International Journal of Environmental Analytical Chemistry, 47, 99–128. doi: 10.1080/03067319208027022.CrossRefGoogle Scholar
  36. Sacher, F., Raue, B., Klinger, J., & Brauch, H.-J. (1999). Simultaneous determination of Cr(III) and Cr(VI) in ground and drinking waters by IC-ICP-MS. International Journal of Environmental Analytical Chemistry, 74, 191–201. doi: 10.1080/03067319908031425.CrossRefGoogle Scholar
  37. Schlautman, M. A., & Han, I. (2001). Effects of pH and dissolved oxygen on the reduction of hexavalent chromium by dissolved ferrous iron in poorly buffered aqueous systems. Water Research, 35, 1534–1546. doi: 10.1016/S0043-1354(00)00408-5.CrossRefGoogle Scholar
  38. Schroeder, D. C., & Lee, G. F. (1975). Potential transformations of chromium in natural waters. Water, Air, and Soil Pollution, 4, 355–365. doi: 10.1007/BF00280721.CrossRefGoogle Scholar
  39. Sedlak, D. L., & Chan, P. G. (1997). Reduction of hexavalent chromium by ferrous iron. Geochimica et Cosmochimica Acta, 61, 2185–2192. doi: 10.1016/S0016-7037(97)00077-X.CrossRefGoogle Scholar
  40. Stefansson, A., Arnorsson, S., & Sveinbjornsdottir, A. E. (2005). Redox reactions and potentials in natural waters at disequilibrium. Chemical Geology, 221, 289–311. doi: 10.1016/j.chemgeo.2005.06.003.CrossRefGoogle Scholar
  41. Stein, K., & Schwedt, G. (1994). Speciation of chromium in the waste water from a tannery. Fresenius’ Journal of Analytical Chemistry, 350, 38–43. doi: 10.1007/BF00326250.CrossRefGoogle Scholar
  42. Sturgeon, R. E., Berman, S., Desaulniers, S. A., & Russell, D. S. (1980). Pre-concentration of trace metals from seawater for determination by graphite-furnace atomic absorption spectrometry. Talanta, 27, 85–94. doi: 10.1016/0039-9140(80)80023-3.CrossRefGoogle Scholar
  43. Subramanian, K. (1988). Determination of chromium(III) and chromium(VI) by ammonium pyrrolidinecarbodithioate–methyl isobutyl ketone furnace atomic absorption spectrometry. Analytical Chemistry, 60, 11–15. doi: 10.1021/ac00152a004.CrossRefGoogle Scholar
  44. Viollier, E., Inglett, P. W., Hunter, K., Roychoudhury, A. N., & Van Cappellen, P. (2000). The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. Applied Geochemistry, 15, 785–790. doi: 10.1016/S0883-2927(99)00097-9.CrossRefGoogle Scholar
  45. Wai, C. M., Tsay, L. M., & Yu, J. C. (1987). A two step extraction method for differentiating chromium species in water. Mikrochimica Acta, II, 73–78. doi: 10.1007/BF01201719.Google Scholar
  46. Walsh, A. R., & O’halloran, J. (1996). Chromium speciation in tannery effluent—I. An assessment of techniques and the role of organic Cr(III) complexes. Water Research, 30, 2393–2400. doi: 10.1016/0043-1354(96)00173-X.CrossRefGoogle Scholar
  47. Wang, J. S., & Chiu, K. (2004). Simultaneous extraction of Cr(III) and Cr(VI) with a dithiocarbamate reagent followed by HPLC separation for chromium speciation. Analytical Sciences, 20, 841–846. doi: 10.2116/analsci.20.841.CrossRefGoogle Scholar
  48. Wang, L., Hu, B., Jiang, Z., & Li, Z. (2002). Speciation of CrIII and CrVI in aqueous samples by coprecipitation/slurry sampling fluorination assisted graphite furnace atomic absorption spectrometry. International Journal of Environmental Analytical Chemistry, 82, 387–393. doi: 10.1080/03067310290007813.CrossRefGoogle Scholar
  49. Whalley, C., Hursthouse, A., Rowlatt, S., Iqbal-Zahid, P., Vaughan, H., & Durant, R. (1999). Chromium speciation in natural waters draining contaminated land, Glasgow, UK. Water, Air, and Soil Pollution, 112, 389–405. doi: 10.1023/A:1005017506227.CrossRefGoogle Scholar
  50. Wittbrodt, P. R., & Palmer, C. D. (1995). Reduction of Cr(VI) in the presence of excess soil fulvic acid. Environmental Science & Technology, 29, 255–263. doi: 10.1021/es00001a033.CrossRefGoogle Scholar
  51. Yokel, R. A., Lasley, S. M., & Dorman, D. C. (2006). The speciation of metals in mammals influences their toxicokinetics and toxicodynamics and therefore human health risk assessment. Journal of Toxicology and Environmental Health. Part B, Critical Reviews, 9, 63–85. doi: 10.1080/15287390500196230.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Chemical Laboratory, Central Ground Water BoardSouth Eastern Coastal RegionChennaiIndia
  2. 2.Department of Analytical ChemistryUniversity of MadrasChennaiIndia

Personalised recommendations