Beyond data management: how ecoinformatics can benefit environmental monitoring programs

Article

Abstract

We review ways in which the new discipline of ecoinformatics is changing how environmental monitoring data are managed, synthesized, and analyzed. Rapid improvements in information technology and strong interest in biodiversity and sustainable ecosystems are driving a vigorous phase of development in ecological databases. Emerging data standards and protocols enable these data to be shared in ways that have previously been difficult. We use the U.S. Environmental Protection Agency’s National Coastal Assessment (NCA) as an example. The NCA has collected biological, chemical, and physical data from thousands of stations around the U.S. coasts since 1990. NCA data that were collected primarily to assess the ecological condition of the U.S. coasts can be used in innovative ways, such as biogeographical studies to analyze species invasions. NCA application of ecoinformatics tools leads to new possibilities for integrating the hundreds of thousands of NCA species records with other databases to address broad-scale and long-term questions such as environmental impacts, global climate change, and species invasions.

Keywords

Ecoinformatics Ecological databases Environmental monitoring Taxonomic databases U.S. National Coastal Assessment 

References

  1. Berendsohn, W. G., & Geoffroy, M. (2007). Networking taxonomic concepts—uniting without ‘unitary-ism’ In G. B. Curry & C. J. Humphries (Eds.), Biodiversity databases: Techniques, politics, and applications (pp. 13–22). Boca Raton: CRC.Google Scholar
  2. Best, B. D., Halpin, P. N., Fujioka, E. I., Read, A. J., Song, S. Q., Hazen, L. J., et al. (2007). Geospatial web services within a scientific workflow: Predicting marine mammal habitats in a dynamic environment. Ecological Informatics, 2, 210–223.CrossRefGoogle Scholar
  3. Bruns, D. A., & Wiersma, G. B. (2004). Conceptual basis of environmental monitoring systems: A geospatial perspective. In G. B. Wiersma (Ed.), Environmental monitoring (pp. 1–35). Boca Raton: CRC.Google Scholar
  4. Butler, R., Servilla, M., Gage, S., Basney, J., Welch, V., Baker, B., et al. (2006). Cyberinfrastructure for the analysis of ecological acoustic sensor data: A use case study in grid deployment. In Proceedings of challenges of large applications in distributed environments (pp. 25–33). 2006, Institute of Electrical and Electronics Engineers.Google Scholar
  5. Chandramouli, A., & Gauch, S. (2006). Semi-automatic update of existing taxonomy using text mining [abstract]. In 5th international conference on ecological informatics, 4–6 Dec 2006. Santa Barbara, CA [014].Google Scholar
  6. Clothier, M., & Bailey, M. (2006). Visualization in outdoor ecological environments [abstract]. In 5th international conference on ecological informatics, 4–6 Dec 2006. Santa Barbara, CA [P1].Google Scholar
  7. Colwell, R. (1998). Balancing the biocomplexity of the planet’s living systems: A twenty-first century task for science. BioScience, 48, 786–787.CrossRefGoogle Scholar
  8. Culverhouse, P. (2007). Human and machine factors in algae monitoring performance. Ecological Informatics, 2, 361–366.CrossRefGoogle Scholar
  9. Curry, G. B., & Connor, R. J. (2007). Automated extraction of biodiversity data from taxonomic descriptions. In G. B. Curry & C. J. Humphries (Eds.), Biodiversity databases: Techniques, politics, and applications (pp. 63–81). Boca Raton: CRC.Google Scholar
  10. Ecoinformatics (2007). Retrieved 1 June 2007 from www.ecoinformatics.org.
  11. EIMS [Environmental Information Management System] (2007). Retrieved 1 June 2007 from www.epa.gov/eims.
  12. EMAP [Environmental Monitoring and Assessment Program] (2007). Retrieved 1 June 2007 from www.epa.gov/emap.
  13. EOL [Encyclopedia of Life] (2007). Retrieved 1 June 2007 from www.eol.org.
  14. FishBase (2007). Retrieved 1 June 2007 from www.fishbase.org.
  15. Flemons, P., Guralnick, R., Krieger, J., Ranipeta, A., & Neufeld, D. (2007). A web-based GIS tool for exploring the world’s biodiversity: The global biodiversity information facility mapping and analysis portal application (GBIF-MAPA). Ecological Informatics, 2, 49–60.CrossRefGoogle Scholar
  16. GCMD [Global Change Master Directory] (2007). Retrieved 1 June 2007 from gcmd.nasa.gov.
  17. Godfray, H. C. J. (2002). Challenges for taxonomy. Nature, 417, 17–19.CrossRefGoogle Scholar
  18. Hale, S. S., Hughes, M. M., Strobel, C. J., Buffum, H. W., Copeland, J. L., & Paul, J. F. (2002). Coastal ecological data from the Virginian biogeographic province, 1990–1993. Ecology, 83, 2942, and Ecological Archives, E083-057.Google Scholar
  19. Halpin, P. N., Read, A. J., Best, B. D., Hyrenback, K. D., Fujioka, E., Coyne, M. S., et al. (2006). OBIS-SEAMAP: Developing a biogeographic research data commons for the ecological studies of marine mammals, seabirds, and sea turtles. Marine Ecology Progress Series, 316, 239–246.CrossRefGoogle Scholar
  20. Horrigan, N., & Baird, D. J. (2006). Using artificial neural network models to diagnose potential causes of impairment in stressed river invertebrate communities [abstract]. In 5th international conference on ecological informatics, 4–6 Dec 2006. Santa Barbara, CA. [O55].Google Scholar
  21. ITIS [Integrated Taxonomic Information System] (2007). Retrieved 1 June 2007 from www.itis.gov.
  22. IUCN [International Union for the Conservation of Nature] (2007). Retrieved 1 June 2007 from http://www.iucn.org.
  23. Jackson, J. B. C., Kirby, M. X., Berger, W. H., Bjorndal, K. A., Botsford, L. W., Bourque, B. J., et al. (2001). Historical overfishing and the recent collapse of coastal ecosystems. Science, 293(5530), 629–637.CrossRefGoogle Scholar
  24. Jones, M. (2006). Using metadata and ontologies to facilitate ecological analysis and modeling [abstract]. In 5th international conference on ecological informatics, 4–6 Dec 2006. Santa Barbara, CA [K1].Google Scholar
  25. Jones, A. C. (2007). The grid and biodiversity databases. In G. B. Curry & C. J. Humphries (Eds.), Biodiversity databases: Techniques, politics, and applications (pp. 83–97). Boca Raton: CRC.Google Scholar
  26. Jones, C., Blanchette, C., Brooke, M., Harris, J., Jones, M., & Schildhauer, M. (2007). A metadata-driven framework for generating field data entry interfaces in ecology. Ecological Informatics, 2, 270–278.CrossRefGoogle Scholar
  27. Kennedy, J. B., Kuhla, R., & Paterson, T. (2005). Scientific names are ambiguous identifiers for biological taxa: Their context and definition are required for accurate data integration. In B. Ludäscher & L. Raschid (Eds.), Data integration in the life sciences (pp. 80–95). Berlin: Springer.Google Scholar
  28. KNB [Knowledge Network for Biocomplexity] (2007). Retrieved 1 June 2007 from knb.ecoinformatics.org.
  29. Lane, M. A., & Edwards, J. L. (2007). The global biodiversity information facility (GBIF). In G. B. Curry & C. J. Humphries (Eds.), Biodiversity databases: Techniques, politics, and applications (pp. 1–4). Boca Raton: CRC.Google Scholar
  30. Lovett, G. M., Burns, D. A., Driscoll, C. T., Jenkins, J. C., Mitchell, M. J., Rustad, L., et al. (2007). Who needs environmental monitoring? Frontiers in Ecology and Environment, 5, 253–260.CrossRefGoogle Scholar
  31. MacLeod, N., O’Neill, M., & Walsh, S. A. (2007). A comparison between morphometric and artificial neural network approaches to the automated species recognition problem in systematics. In G. B. Curry & C. J. Humphries (Eds.), Biodiversity databases: Techniques, politics, and applications (pp. 37–62). Boca Raton: CRC.Google Scholar
  32. McGuire, M. Gangopadhyay, A., Komlodi, A., & Swan C. (2008). A user-centered design for a spatial data warehouse for data exploration in environment research. Ecological Informatics, 3, 273–285.CrossRefGoogle Scholar
  33. Michener, W. K. (2000). Ecological knowledge and future data challenges. In W. K. Michener & J. W. Brunt (Eds.), Ecological data: Design, management and processing (pp. 162–174). Oxford: Blackwell.Google Scholar
  34. Michener, W. K. (2006). Meta-information concepts for ecological data management. Ecological Informatics, 1, 3–7.CrossRefGoogle Scholar
  35. Michener, W. K., Brunt, J. W., Helly, J., Kirchner, T. B., & Stafford, S. G. (1997). Non-geospatial metadata for the ecological sciences. Ecological Applications, 7, 330–342.CrossRefGoogle Scholar
  36. MMI [Marine Metadata Interoperability] (2007). Retrieved 1 June 2007 from marinemetadata.org.
  37. Morris, C., & Boddy, L. (2006). Some inherent problems in biological identification from images [abstract]. In 5th international conference on ecological informatics, 4–6 Dec 2006, Santa Barbara, CA [063].Google Scholar
  38. NEON [National Ecological Observatory Network] (2007). Retrieved 1 June 2007 from neoninc.org.
  39. NCA [National Coastal Assessment] (2007). Retrieved 1 June 2007 from www.epa.gov/emap/nca.
  40. OBIS [Ocean Biogeographic Information System] (2007). Retrieved 1 June 2007 from www.iobis.org.
  41. Olden, J. D., Poff, N. L., & Bledsoe, B. P. (2006). Incorporating ecological knowledge into ecoinformatics: An example of modeling hierarchically structured aquatic communities with neural networks. Ecological Informatics, 1, 33–42.CrossRefGoogle Scholar
  42. Parr, C. S., Lee, B., & Bederson, B. B. (2007). EcoLens: Integration and interactive visualization of ecological datasets. Ecological Informatics, 2, 61–69.CrossRefGoogle Scholar
  43. Pascoe, T. J., Kralidis, T., Cree, J., & Baird, D. (2006). BugML: Implementing XML standards for sharing and interoperability of aquatic biomonitoring data. [abstract]. In 5th international conference on ecological informatics, 4–6 Dec 2006. Santa Barbara, CA [P6].Google Scholar
  44. Pennington, D., Michener, W. K., Higgins, D., & Peterson, A. T. (2006). Ecological niche modeling with the Kepler workflow system [abstract]. In 5th international conference on ecological informatics, 4–6 Dec 2006. Santa Barbara, CA [010].Google Scholar
  45. Scoble, M. J., & Berendsohn, W. G. (2007). Networking biological collections databases: Building a European infrastructure. In G. B. Curry & C. J. Humphries (Eds.), Biodiversity databases: Techniques, politics, and applications (pp. 23–35). Boca Raton: CRC.Google Scholar
  46. SEEK [Science Environment for Ecological Knowledge] (2008). Retrieved 2 January 2008 from http://seek.ecoinformatics.org.
  47. Song, M., Park, Y., Kwak, I., Woo, H., & Chon, T. (2006). Characterization of benthic macroinvertebrate communities in a restored stream by using self-organizing map. Ecological Informatics, 1, 295–305.CrossRefGoogle Scholar
  48. Stevenson, R. D., & Shrewsbury, S. (2006). Identifying and quantifying the usage of information elements found in field guides [abstract]. In 5th international conference on ecological informatics, 4–6 Dec 2006. Santa Barbara, CA [O70].Google Scholar
  49. STORET (2007). Retrieved 1 June 2007 from www.epa.gov/storet.
  50. Suri, A., Iyengar, S. S., & Cho, E. (2006). Ecoinformatics using wireless sensor networks: An overview. Ecological Informatics, 1, 287–293.CrossRefGoogle Scholar
  51. TDWG [Taxonomic Database Working Group] (2007). Retrieved 1 June 2007 from www.tdwg.org.
  52. USEPA (2007). National coastal condition report III.. Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC.Google Scholar
  53. USNVO [The U.S. National Virtual Observatory] (2007). Retrieved 1 June 2007 from www.us-vo.org.
  54. Van den Brink, P., Rubach, M., Baird, D., & Maund, S. (2006). Assessing ecosystem health and impairment by species traits and their relation to stressors [abstract]. In 5th international conference on ecological informatics, 4–6 Dec 2006. Santa Barbara, CA [P7].Google Scholar
  55. Van Donk, E. (2007). Chemical information transfer in freshwater plankton. Ecological Informatics, 2, 112–120.CrossRefGoogle Scholar
  56. Vos, M., Vet, L. E. M., Wäckers, F. L., Middelburg, J. J., van der Putten, W. H., Mooij, W. M., et al. (2006). Infochemicals structure marine, terrestrial and freshwater food webs: Implications for ecological informatics. Ecological Informatics, 1, 23–32.CrossRefGoogle Scholar
  57. White, R. J. (2007). Linking biodiversity databases: Preparing species diversity information sources by assembling, merging and linking databases. In G. B. Curry & C. J. Humphries (Eds.), Biodiversity databases: Techniques, politics, and applications (pp. 111–128). Boca Raton: CRC.Google Scholar
  58. Williams, J. B. & Poff, N. L. (2006). Informatics software for the ecologist’s toolbox: A basic example. Ecological Informatics, 1, 325–329.CrossRefGoogle Scholar
  59. Worm, B., Barbier, E. B., Beaumont, N., Duffy, J. E., Folke, C., Halpern, B. S., et al. (2006). Impacts of biodiversity loss on ocean ecosystem services. Science, 314, 787–790.CrossRefGoogle Scholar
  60. Worner, S., & Watts, M. (2006). Null model analysis of a self organising map of invasive species distributions [abstract]. In 5th international conference on ecological informatics, 4–6 Dec 2006. Santa Barbara, CA [O26].Google Scholar

Copyright information

© US Government 2008

Authors and Affiliations

  1. 1.Atlantic Ecology Division, National Health and Environmental Effects Research Laboratory, Office of Research and DevelopmentU.S. Environmental Protection AgencyNarragansettUSA

Personalised recommendations