Environmental Monitoring and Assessment

, Volume 160, Issue 1–4, pp 123–126 | Cite as

Evaluation of leaching behavior of pendimethalin in sandy loam soil



The mobility of pendimethalin in sandy loam soil was studied in soil columns under laboratory conditions at two application rates, 1.0 and 2.0 kg a.i. ha − 1, with simulated rainfall of 300 mm. The maximum concentration of the herbicide was found in the top 10 cm layer, though it was found distributed in soil at all the depths at both the doses.


Pendimethalin Sandy loam soil Leaching Column Leachates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bhowmick, M. K., & Ghosh, R. K. 2002). Relative efficacy of herbicides against weed incidence in summer rice. Advances in Plant Science, 34, 192–196.Google Scholar
  2. Costa, J. L., Knighton, R. E., & Prunty, I. (1994). Model comparison of unsaturated steady state solute transport in a field soil. Journal of Soil Science America, 58, 1277–1287.Google Scholar
  3. Flury, M. (1996). Experimental evidence of transport of pesticide through field soils a review. Journal of Environmental Quality, 25, 25–45.CrossRefGoogle Scholar
  4. Gustafson, D. I. (1995). Development of novel active ingredients. In M. Vaghi & E. Funari (Eds.), Pesticide risk in ground water (pp. 153–161). Boca Eaton: F1 CRC.Google Scholar
  5. Hartley, G. S., & Graham Bryce, I. J. (1980). Physical principles of pesticides behaviour (pp. 272–275). London: Academic Press.Google Scholar
  6. James, T. K., Holland, P. T., Rahman, A., & Lu, Y. R. (1995). Degradation of the sulfonylurea herbicide chlorsulfuron and triasulfuron in a high organic matter volcanic soil. Weed Research, 39, 137–147. doi: 10.1046/j.1365-3180.1999.00131.x.CrossRefGoogle Scholar
  7. Koterba, M. T., Banks, W. S., & Shedlock, R. J. (1993). Pesticides in shallow groundwater in the Delmarva Peninsula. Journal of Environmental Quality, 22, 500–518.Google Scholar
  8. Kumari, B., Madan, V. K., & Kathpal, T. S. (2007). Pesticide residues in rain water from Hisar, India. Environmental Monitoring and Assessment, 133, 467–471. doi: 10.1007/s10661-006-9601-2.CrossRefGoogle Scholar
  9. Lazic, S., Jevtic, S., & Lazic, B. (1997). Pendimethalin residues in onion. Acta Horticulturae, 462, 571–576.Google Scholar
  10. Ritter, W. F., Chirnside, A. E. M., & Scarborough, R. W. (1996). Movement and degradation of triazines, alachlor and metachlor in sandy soils. Journal of Environmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes, 31, 2699–2721.Google Scholar
  11. Savage, K. E., & Jordan, T. E. (1980). Persistence of three dinitroaniline herbicides on the soil surface. Weed Science, 28, 105–110.Google Scholar
  12. Sawhney, B. L., & Brown, K. (1989). Reactions and movement of organic chemicals in soils. Soil Science Society, America Inc. Madison, WI, 22, 22–27.Google Scholar
  13. Schleicher, L. C., Shea, P. J., Stouggaard, R. N., & Tupy, D. R. (1995). Efficacy and dissipation of dithiopyr and pendimethalin in perennial ryegrass (Lolium perenne) turf. Weed Science, 28, 105–110.Google Scholar
  14. Signori, L. H., & Deuber, R. (1979). Leaching of pendimethalin and napromide in two soil types. Planta Danninha, 2, 40–43.Google Scholar
  15. Sinha, S. N., Agnihotri, N. P., & Gajbhiye, V. T. (1996). Field evaluation of pendimethalin for weed control in onion and persistence in plant and soil. Annals of Pt. Prot. Science, 4, 71–75.Google Scholar
  16. Sondhia, S. (2006). Annual Report. National Research Centre for Weed Science.Google Scholar
  17. Sondhia, S. (2007). Evaluation of leaching potential of pendimethalin in clay loam soil. Pesticide Research Journal, 19(1), 119–121.Google Scholar
  18. Sondhia, S., & Yaduraju, N. T. (2005). Evaluation of leaching of atrazine and metribuzin in tropical soil. Indian Journal of Weed Science, 37, 298–300.Google Scholar
  19. Sondhia, S., & Dubey, R. P. (2006). Determination of terminal residue of butachlor and pendimethalin in onion. Pesticide Research Journal, 18, 85–86.Google Scholar
  20. Tsiropoulos, N. G., & Miliadis, G. E. S. (1998). Field persistence study of pendimethalin in soils after herbicide post emergence application in onion cultivation. Journal of Agricultural and Food Chemistry, 46, 291–295. doi: 10.1021/jf970712h.CrossRefGoogle Scholar
  21. Vanwyk, L. J., & Reinhardt, C. F. (2001). A bioassay technique detects imazethapyr leaching and liming dependent activity. Weed Technology, 15, 1–6. doi: 10.1614/0890-037X(2001)015[0001:ABTDIL]2.0.CO;2.CrossRefGoogle Scholar
  22. Wagner, J., Chen, H., Brownawell, B. J., & Westall, J. C. (1994). Use of cationic surfactants to modify soil surfaces to promote sorption and retard migration of hydrophobic organic compounds. Environmental Science and Toxicology, 28, 231–237. doi: 10.1021/es00051a008.Google Scholar
  23. Walker, A., Cotteril, E. G., & Welch, S. J. (1989). Adsorption and degradation of chlorsulfuron and metsulfuron methyl in soils from different depths. Weed Research, 29, 281–287. doi: 10.1111/j.1365-3180.1989.tb00913.x.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Chemistry and PhysicsCCS Haryana Agricultural UniversityHisar -125 004India
  2. 2.Department of Soil SciencesCCS Haryana Agricultural UniversityHisar -125 004India

Personalised recommendations