Ecological monitoring of intertidal phytobenthic communities of the Basque Coast (N. Spain) following the Prestige oil spill

  • I. Díez
  • A. Secilla
  • A. Santolaria
  • J. M. Gorostiaga


Following the Prestige oil spill, six-monthly samplings (spring and autumn) of intertidal macroalgal assemblages were carried out from 2004 to 2006 in twelve locations along the Basque coast. Macroalgal species appeared to be little modified, but species richness, diversity, and algal cover were significantly lower in the first year of the study, so it cannot be ruled out that the arrival of oil on the Basque coast might have had a damaging effect on intertidal communities. On the other hand, no significant differences were detected between locations slightly and moderately affected by oil in any of the structural parameters considered. By contrast, significant differences were detected between locations within each oiling level that indicate that other natural environmental factors play a greater role in the differences between locations than the oiling level. Likewise, significant differences were detected between areas within each location which were not consistent with time, indicating that communities are highly heterogeneous in species richness, diversity and algal cover at the scale of tens of meters. The dominant Corallina elongata and most of the accompanying species did not show significant year-on-year differences in terms of cover. Also, there were no differences between the two oiling levels. Analyses revealed a high spatial variability at the scale of kilometers (locations) and tens of meters (areas) for most of the taxa. The results obtained provide detailed quantitative data on intertidal phytobenthic assemblages of the Basque coast at different spatial and temporal scales that were hitherto unavailable for the region.


Corallina elongata Distribution patterns Macroalgal assemblages Oil spill Pollution Seaweeds Spatial variation Temporal variation 


  1. Anderson, M. J. (2001). A new method for non-parametric multivariate analysis of variance. Austral Ecology, 82, 290–297.Google Scholar
  2. Anderson, M. J. (2003). PCO: A FORTRAN computer program for principal coordinate analysis. New Zealand: Department of Statistics, University of Auckland.Google Scholar
  3. Antrim, L. D., Thom, R. M., Gardiner, W. W., Cullinan, V. I., Shreffler, D. K., & Bienert, R. W. (1995). Effects of petroleum products on bull kelp (Nereocystis luetkeanna). Marine Biology (Berlin), 122, 23–31. doi:10.1007/BF00349274.CrossRefGoogle Scholar
  4. Arévalo, R., Pinedo, S., & Ballesteros, E. (2007). Changes in the composition and structure of Mediterranean rocky-shore communities following a gradient of nutrient enrichment: Descriptive study and test of proposed methods to assess water quality regarding macroalgae. Marine Pollution Bulletin, 55, 104–113. doi:10.1016/j.marpolbul.2006.08.023.CrossRefGoogle Scholar
  5. Barillé-Boyer, A. L., Gruet, Y., Barillé, L., & Harin, N. (2004). Temporal changes in community structure of tide pools following the “Erika” oil spill. Aquatic Living Resources, 17, 323–328. doi:10.1051/alr:2004041.CrossRefGoogle Scholar
  6. Bowman, R. S. (1978). Dounreay oil spill: Major implications of a minor incident. Marine Pollution Bulletin, 9, 269–273. doi:10.1016/0025-326X(78)90609-4.CrossRefGoogle Scholar
  7. Braun-Blanquet, J. (1951). Plant sociology: The study of plant communities. New York: McGraw Hill.Google Scholar
  8. Bray, J. R., & Curtis, J. T. (1957). An ordination of the upland forest communities of Southern Wisconsin. Ecological Monographs, 27, 325–349. doi:10.2307/1942268.CrossRefGoogle Scholar
  9. Chamberlain, Y. M. (1997). Investigation of the condition of crustose coralline red algae in Pembrokeshire after the Sea Empress disaster 15–21 February 1997. A report to the Countryside Council for Wales, pp. 31.Google Scholar
  10. Clarke, K. R., & Warwick, R. M. (2001). Change in marine communities: An approach to statistical and interpretation, 2nd edn. PRIMER-E Plymouth.Google Scholar
  11. Crothers, J. H. (1983). Field experiments on the effects of crude oil and dispersant on the common animals and plants of rocky seashores. Marine Environmental Research, 8, 215–239. doi:10.1016/0141-1136(83)90033-8.CrossRefGoogle Scholar
  12. Crowe, T. P., Thompson, R. C., Bray, S., & Hawkins, S. J. (2000). Impacts of anthropogenic stress on rocky intertidal communities. Journal of Aquatic Ecosystem Stress and Recovery, 7, 273–297. doi:10.1023/A:1009911928100.CrossRefGoogle Scholar
  13. Crump, R. G., Morley, H. S., & Williams, A. D. (1999). West Angle Bay, a case of study littoral monitoring of permanent quadrats before and after “Sea Empress” oil spill. Field Studies, 9, 497–511.Google Scholar
  14. Cullinane, J. P., McCarthy, P., & Fletcher, A. (1975). The effect of oil pollution in Bantry Bay. Marine Pollution Bulletin, 6, 173–176. doi:10.1016/0025-326X(75)90285-4.CrossRefGoogle Scholar
  15. De Vogelaere, A. P., & Foster, M. S. (1994). Damage and recovery in intertidal Fucus gardneri assemblages following the Exxon Valdez oil spill. Marine Ecology Progress Series, 106, 263–271. doi:10.3354/meps106263.CrossRefGoogle Scholar
  16. Díez, I., Secilla, A., Santolaria, A., & Gorostiaga, J. M. (1999). Phytobentic intertidal community structure along an environmental pollution gradient. Marine Pollution Bulletin, 38, 463–472. doi:10.1016/S0025-326X(98)90161-8.CrossRefGoogle Scholar
  17. Díez, I., Santolaria, A., Secilla, A., & Gorostiaga, J. M. (in press) ‘Recovery stages over a long-term monitoring of the intertidal vegetation in the ‘Abra de Bilbao’ area and on the adjacent coast N Spain’. European Journal of Phycology. doi:10.1080/09670260802158642.
  18. Driskell, W. B., Ruesink, J. L., Lees, D. C., Houghton, J. P., & Lindstrom, S. C. (2001). Long-term signal of disturbance: Fucus gardneri after the Exxon Valdez oil spill. Ecological Applications, 11, 815–827. doi:10.1890/1051-0761(2001)011[0815:LTSODF]2.0.CO;2.CrossRefGoogle Scholar
  19. Edgar, G. J., & Barrett, N. S. (2000). Impact of the Iron Baron oil spill on subtidal reef assemblages in Tasmania. Marine Pollution Bulletin, 40, 36–49. doi:10.1016/S0025-326X(99)00101-0.CrossRefGoogle Scholar
  20. Gallego, J. R., González-Rojas, E., Peláez, A. I., Sánchez, J., García-Martínez, M. J., Ortiz, J. E., et al. (2006). Natural attenuation and bioremediation of Prestige fuel oil along the Atlantic coast of Galicia (Spain). Organic Geochemistry (Proceedings of the 22nd International Meeting on Organic Geochemistry, Seville, Spain, 12–16 September 2005), 37, 1869–1884.Google Scholar
  21. González, M., Uriarte, A., Pozo, R., & Collins, M. (2006). The Prestige crisis: Operational oceanography applied to oil recovery by the Basque fishing fleet. Marine Pollution Bulletin, 53, 369–374. doi:10.1016/j.marpolbul.2005.02.046.CrossRefGoogle Scholar
  22. Hsiao, S. C., Kittle, D. W., & Foy, M. G. (1978). Effects of crude oil and the oil dispersant corexit on primary production of arctic marine phytoplankton and seaweed. Environmental Pollution, 15, 209–221. doi:10.1016/0013-9327(78)90066-6.CrossRefGoogle Scholar
  23. Jackson, J. B. C., Cubit, J. D., Keller, B. D., Batista, V., Burns, K., Caffey, H. M., et al. (1989). Ecological effects of a major oil spill on Panamanian coastal marine communities. Science, 243, 37–44. doi:10.1126/science.243.4887.37.CrossRefGoogle Scholar
  24. Jones, D. A., Plaza, J., Watt, I., & Al Sanei, M. (1998). Long-term (1991–1995) monitoring of the intertidal biota of Saudi Arabia after the 1991 Gulf War oil spill. Marine Pollution Bulletin, 36, 472–489. doi:10.1016/S0025-326X(98)00009-5.CrossRefGoogle Scholar
  25. Juanes, J. A., Puente, A., Revilla, J. A., Álvarez, C., García, A., Medina, R., et al. (2007). The Prestige oil spill in Cantabria Bay of Biscay. Part II environmental assessment and monitoring of coastal ecosystems. Journal of Coastal Research, 23, 978–992. doi:10.2112/04-0368.1.CrossRefGoogle Scholar
  26. Kindig, A. C., & Littler, M. M. (1980). Growth and primary productivity of marine macrophytes exposed to domestic sewage effluents. Marine Environmental Research, 3, 81–100. doi:10.1016/0141-1136(80)90018-5.CrossRefGoogle Scholar
  27. Kotta, J., Martin, G., & Aps, R. (2007). Sensitivity of benthic vegetation and invertebrate functional guilds to oil spills and its use in oil contingency management related negotiation processes. Proceedings of the Estonian Academy of Sciences Biology, Ecology, 56, 255–269.Google Scholar
  28. Le Hir, M., & Hily, C. (2002). First observations in a high rocky-shore community after the Erika oil spill December 1999, Brittany, France. Marine Pollution Bulletin, 44, 1243–1252. doi:10.1016/S0025-326X(02)00217-5.CrossRefGoogle Scholar
  29. Linden, O., Elmgren, R., & Boehm, P. (1979). The Tsesis oil spill: Its impact on the coastal ecosystem of the Baltic Sea. Ambio, 8, 244–253.Google Scholar
  30. Lobban, C. S., & Harrison, P. J. (1994). ‘Pollution’, In: Seaweed ecology and physiology, Cambridge University Press, pp 255–282.Google Scholar
  31. Marshall, P. A., & Edgar, G. J. (2003). The effect of the Jessica grounding on subtidal invertebrate and plant communities at the Galápagos wreck site. Marine Pollution Bulletin, 47, 284–295. doi:10.1016/S0025-326X(03)00157-7.CrossRefGoogle Scholar
  32. Moore, J. J. (1998). Sea Empress oil spill: Impacts on rocky and sedimentary shores. In R Edwards, & H Sime (Eds.), The Sea Empress oil spill. In Proceedings of the international conference held in Cardiff, Dalton, pp 173–187.Google Scholar
  33. Myers, A. A., Southgate, T., & Cross, T. F. (1980). Distinguishing the effects of oil pollution from natural cyclical phenomena on the biota of Bantry Bay, Ireland. Marine Pollution Bulletin, 11, 204–207. doi:10.1016/0025-326X(80)90494-4.CrossRefGoogle Scholar
  34. Newey, S., & Seed, R. (1995). The effects of the “Braer” oil spill on rocky intertidal communities in south Shetland, Scotland. Marine Pollution Bulletin, 30, 274–280. doi:10.1016/0025-326X(94)00217-W.CrossRefGoogle Scholar
  35. ORBANKOSTA (2003). Inventario de datos sobre la afección de la costa vasca debido al vertido del Prestige. Technical report, IHOBE, Basque Government.Google Scholar
  36. ORBANKOSTA (2004). Inventario de datos sobre la afección de la costa vasca debido al vertido del Prestige. Technical report, IHOBE, Basque Government.Google Scholar
  37. Pascual, A., Cearreta, A., Rodriguez-Lázaro, J., & Uriarte, A. (2004). Geology and palaeoceanography. In A. Borja, & M. Collins (Eds.), Oceanography and marine environment of the Basque Country. Amsterdam: Elsevier Oceanography Series 70, pp. 53–73.CrossRefGoogle Scholar
  38. Peckol, P., Levings, S. C., & Garrity, S. D. (1990). Kelp response following the World Prodigy oil spill. Marine Pollution Bulletin, 21, 473–476. doi:10.1016/0025-326X(90)90066-H.CrossRefGoogle Scholar
  39. Pérez-Ruzafa, A., Marcos, C., Pérez-Ruzafa, I. M., Barcala, E., Hegazi, M. I., & Quispe, J. (2007). Detecting changes resulting from human pressure in a naturally quick-changing and heterogeneous environment: Spatial and temporal scales of variability in coastal lagoons. Estuarine, Coastal and Shelf Science, 75, 175–188. doi:10.1016/j.ecss.2007.04.030.CrossRefGoogle Scholar
  40. Peterson, C. H., McDonald, L. L., Green, R. H., & Erickson, W. P. (2001). Sampling design begets conclusions: The statistical basis for detection of injury to and recovery of shoreline communities after the ‘Exxon Valdez’ oil spill. Marine Ecology Progress Series, 210, 255–283. doi:10.3354/meps210255.CrossRefGoogle Scholar
  41. Peterson, C. H., Rice, S. D., Short, J. W., Esler, D., Bodkin, J. L., Ballachey, B. E., et al. (2003). Long-term ecosystem response to the Exxon Valdez oil spill. Science, 302, 2082–2086. doi:10.1126/science.1084282.CrossRefGoogle Scholar
  42. Pilson, M. W. Q. (1990). Summary of scientists’ response to the World Prodigy oil spill at Brenton Reef, Rhode Island June 23, 1989. GSO Tech Rep no 90-1.Google Scholar
  43. Pople, A., Simpson, R. D., & Cairns, S. C. (1990). An incident of southern oil pollution: Effects of a spillage of diesel fuel on the rocky shore of Macquarie Island (sub-Antarctic). Australian Journal of Marine and Freshwater Research, 41, 603–620. doi:10.1071/MF9900603.CrossRefGoogle Scholar
  44. Premila, V. E., & Umamaheswara Rao, M. (1997). Effect of crude oil on the growth and reproduction of some benthic marine algae of Visakhapatnam coastline. Indian Journal of Marine Sciences, 26, 195–200.Google Scholar
  45. Rolan, R. G., & Gallagher, R. (1991). Recovery of intertidal biotic communities at Sullom Voe following the Esso Bernicia oil spill of 1978. In Proceedings 1991 oil spill conference, American petroleum institute, Washington DC, pp 461–465.Google Scholar
  46. Shiels, W. E., Goering, J. J., & Hood, D. W. (1973) Crude oil phytotoxicity studies. In Environmental Studies of Port Valdez. Braun-Brumfield Inc, USA, pp. 413–446.Google Scholar
  47. Smith, S. D. A., & Simpson, R. D. (1998). Recovery of benthic communities at Macquarie Island sub-Antarctic, following a small oil spill. Marine Biology (Berlin), 131, 567–581. doi:10.1007/s002270050349.CrossRefGoogle Scholar
  48. Southward, A. J., & Southward, C. E. (1978). Recolonization of rocky shores in Cornwall after use of toxic dispersants to clean up the “Torrey Canyon” spill. Journal of the Fisheries Research Board of Canada, 35, 682–706.Google Scholar
  49. Tajadura, F. J., Bustamante, M., & Saiz-Salinas, J. I. (2008). Changes in the intertidal zoobenthic communities of the Basque coast (N. Spain) after the Prestige Oil Spill. In Proceedings of the XI International Symposium on Oceanography of the Bay of Biscay, Vigo, pp 123–124.Google Scholar
  50. Teal, J. M., & Howarth, R. W. (1984). Oil spill studies: A review of ecological effects. Environmental Management, 8, 27–43. doi:10.1007/BF01867871.CrossRefGoogle Scholar
  51. Terlizzi, A., Benedetti-Cecchi, L., Bevilacqua, S., Fraschetti, S., Guidetti, P., & Anderson, M. J. (2005). Multivariate and univariate asymmetrical analyses in environmental impact assessment: A case study of Mediterranean subtidal sessile assemblages. Marine Ecology Progress Series, 289, 27–42. doi:10.3354/meps289027.CrossRefGoogle Scholar
  52. Teruhisa, K., Masahiro, N., Hiroshi, K., Tomoko, Y., Kouichi, O., & Marine Life Research Group of Takeno (2003). Impacts of the Nakhodka heavy-oil spill on an intertidal ecosystem: An approach to impact evaluation using geographical information system. Marine Pollution Bulletin, 47, 99–104. doi: 10.1016/S0025-326X(02)00472-1.CrossRefGoogle Scholar
  53. Thomas, M. L. H. (1978). Comparison of oiled and unoiled intertidal communities in Chedabucto Bay, Nova Scotia. Journal of the Fisheries Research Board of Canada, 35, 707–716.Google Scholar
  54. Topinka, J. A., & Tucker, L. R. (1981). Long-term contamination of fucoid macroalgae following the Amoco Cadiz oil spill. In Amoco Cadiz, fates and effects of the oil spill, CNEXO, Paris, pp 393–404.Google Scholar
  55. Valencia, V., Franco, J., Borja, A., & Fontán, A. (2004) Hydrography of the southeastern Bay of Biscay. In A. Borja, & M. Collins (Eds.), Oceanography and marine environment of the Basque Country. Amsterdam: Elsevier Oceanography Series 70, pp. 159–194.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • I. Díez
    • 1
  • A. Secilla
    • 1
  • A. Santolaria
    • 1
  • J. M. Gorostiaga
    • 1
  1. 1.Departamento de Biología Vegetal y Ecología, Facultad de Ciencia y TecnologíaUniversidad del País VascoBilbaoSpain

Personalised recommendations