Advertisement

Environmental Monitoring and Assessment

, Volume 159, Issue 1–4, pp 367–379 | Cite as

Impact of sampling strategy on stream load estimates in till landscape of the Midwest

  • Philippe Vidon
  • Laura E. Hubbard
  • Emmanuel Soyeux
Article

Abstract

Accurately estimating various solute loads in streams during storms is critical to accurately determine maximum daily loads for regulatory purposes. This study investigates the impact of sampling strategy on solute load estimates in streams in the US Midwest. Three different solute types (nitrate, magnesium, and dissolved organic carbon (DOC)) and three sampling strategies are assessed. Regardless of the method, the average error on nitrate loads is higher than for magnesium or DOC loads, and all three methods generally underestimate DOC loads and overestimate magnesium loads. Increasing sampling frequency only slightly improves the accuracy of solute load estimates but generally improves the precision of load calculations. This type of investigation is critical for water management and environmental assessment so error on solute load calculations can be taken into account by landscape managers, and sampling strategies optimized as a function of monitoring objectives.

Keywords

Surface water hydrology Environmental sampling Watershed management Solute load Error estimation US Midwest 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boyer, E. W., Hornberger, G. M., Bencala, K. E., & McKnight, D. M. (1997). Response characteristics of DOC flushing in an alpine catchment. Hydrological Processes, 11, 1635–1647. doi:10.1002/(SICI)1099-1085(19971015)11:12<1635::AID-HYP494>3.0.CO;2-H.CrossRefGoogle Scholar
  2. Clesceri, L. S., Greenberg, A. E., & Eaton, A. D. (1998). Standard methods for the examination of water and waste water (20th ed.). In L. S. Clesceri, A. E. Greenberg, & A. D. Eaton (Eds.), Washington, DC: American Public Health Association.Google Scholar
  3. Cooke, S. E., & Prepas, E. E. (1998). Stream phosphorus and nitrogen export from agricultural and forested watersheds on the Boreal Plain. Canadian Journal of Fisheries and Aquatic Sciences, 55, 2292–2299. doi:10.1139/cjfas-55-10-2292.CrossRefGoogle Scholar
  4. Coulter, C. B., Kolka, R. K., & Thompson, J. A. (2004). Water quality in agricultural, urban, and mixed land use watersheds. Journal of the American Water Resources Association, 40(6), 1593–1601. doi:10.1111/j.1752-1688.2004.tb01608.x.CrossRefGoogle Scholar
  5. Creed, I. F., & Band, L. E. (1998). Export of nitrogen from catchments within a temperate forest: Evidence for a unifying mechanism regulated by variable source area dynamics. Water Resources Research, 34(11), 3105–3120. doi:10.1029/98WR01924.CrossRefGoogle Scholar
  6. Dalzell, B. J., Filley, T. R., & Harbor, J. M. (2007). The role of hydrology in annual organic carbon loads and terrestrial organic matter export from a midwestern agricultural watershed. Geochimica et Cosmochimica Acta, 71(6), 1448–1462. doi:10.1016/j.gca.2006.12.009.CrossRefGoogle Scholar
  7. Elwood, J. W., & Turner, R. R. (1989). Streams: Water chemistry and ecology. In D. W. Johnson & R. I. Van Hook (Eds.), Analysis of biogeochemical cycling processes in walker branch watershed (pp. 301–350). New York: Springer.Google Scholar
  8. Hangen, E., Lindenlaub, M., Leibundgut, C., & Von Wilper, K. (2001). Investigating mechanisms of stormflow generation by natural tracers and hydrometric data: A small catchment study in the Black Forest, Germany. Hydrological Processes, 15, 183–199. doi:10.1002/hyp.142.CrossRefGoogle Scholar
  9. Hill, A. R. (1978). Factors affecting the export of nitrate-nitrogen from drainage basins in Southern Ontario. Water Research, 12, 1045–1057. doi:10.1016/0043-1354(78)90050-7.CrossRefGoogle Scholar
  10. Hill, A. R. (1993). Base cation chemistry of storm runoff in a forested headwater wetland. Water Resources Research, 29(8), 2663–2673. doi:10.1029/93WR00758.CrossRefGoogle Scholar
  11. Hood, E., Gooseff, M. N., & Johnson, S. S. (2006). Changes in the character of stream water dissolved organic carbon during flushing in three small watersheds, Oregon. Journal of Geophysical Research, 111, G01007. doi:10.1029/2005JG000082.CrossRefGoogle Scholar
  12. Hubbard, L. E., Vidon, P., Tedesco, L. E., & Gray, M. (2008). Stream nitrate and DOC dynamics during three spring storms across land uses in glaciated landscapes of the Midwest. Journal of Hydrology, 362, 177–190CrossRefGoogle Scholar
  13. Inamdar, S. P., Christopher, S. F., & Mitchell, M. J. (2004). Export mechanisms for dissolved organic carbon and nitrate during summer storm events in a glaciated forested catchment in New York, USA. Hydrological Processes, 18, 2651–2661. doi:10.1002/hyp.5572.CrossRefGoogle Scholar
  14. Kahl, J. S., Norton, S. A., Haines, T. A., Rochette, E. A., Heath, R. H., & Nodvin, S. C. (1992). Mechanisms of episodic acidification in low-order streams in Maine, USA. Environmental Pollution, 78, 37–44. doi:10.1016/0269-7491(92)90007-W.CrossRefGoogle Scholar
  15. McHale, M. R., McDonnell, J. J., Mitchell, M. J., & Cirmo, C. P. (2002). A field-based study of soil water and groundwater nitrate release in an Adirondack forested watershed. Water Resources Research, 38(4), 1032. doi:10.1029/2001WR000320. doi:10.1029/2000WR000102.CrossRefGoogle Scholar
  16. Reid, J. M., MacLeord, D. A., & Cresser, M. S. (1981). Factors affecting the chemistry of precipitation and river water in an upland catchment. Journal of Hydrology (Amsterdam), 50, 129–145. doi:10.1016/0022-1694(81)90064-0.CrossRefGoogle Scholar
  17. Royer, T. V., David, M. B., & Gentry, L. E. (2006). Timing of riverine export of nitrate and phosphorus from agricultural watersheds in Illinois: Implications for reducing nutrient loading to the Mississippi River. Environmental Science & Technology, 40, 4126–4131. doi:10.1021/es052573n.CrossRefGoogle Scholar
  18. Sidle, R. C., Tsuboyama, Y., Noguchi, S., Hosoda, I., Fujieda, M., & Shimizu, T. (2000). Stormflow generation in steep forested headwaters: A linked hydrogeomorphic paradigm. Hydrological Processes, 14, 369–385. doi:10.1002/(SICI)1099-1085(20000228)14:3<369::AID-HYP943>3.0.CO;2-P.CrossRefGoogle Scholar
  19. U.S. Department of Agriculture (1974). Soil Survey of Hendricks County, Indiana.Google Scholar
  20. U.S. Geological Survey (2005). Evaluation of drainage-area ratio method used to estimate streamflow for the Red River of the North Basin, North Dakota and Minnesota. Scientific Investigations Report 2005–5017.Google Scholar
  21. Vanni, M. J., Renwick, W. H., Headworth, J. L., Auch, J. D., & Schaus, M. H. (2001). Dissolved and particulate nutrient flux from three adjacent agricultural watersheds: A five-year study. Biogeochemistry, 54, 85–114. doi:10.1023/A:1010681229460.CrossRefGoogle Scholar
  22. Vidon, P., Hubbard, L. E., & Soyeux, E. (2008). Changes in the character of DOC in streams during storms in two Midwestern watersheds with contrasting land uses. Biogeochemistry, 88, 257–270. doi:10.1007/s10533-008-9207-6.CrossRefGoogle Scholar
  23. Waldrip, D. B., & Roberts, M. C. (1972). The distribution of slopes in Indiana. Proceedings of the Indiana Academy of Sciences, 81, 251–257.Google Scholar
  24. Wigington, P. J., Griffith, S. M., Field, J. A., Baham, J. E., Horwath, W. R., Owen, J., et al. (2003). Nitrate removal effectiveness of a riparian buffer along a small agricultural stream in western Oregon. Journal of Environmental Quality, 32, 162–170.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Philippe Vidon
    • 1
  • Laura E. Hubbard
    • 1
    • 3
  • Emmanuel Soyeux
    • 2
  1. 1.Department of Earth Sciences and Center for Earth and Environmental Science, SL118Indiana University–Purdue University, IndianapolisIndianapolisUSA
  2. 2.Research DepartmentVeolia EnvironmentParisFrance
  3. 3.U.S. Geological SurveyIowa CityUSA

Personalised recommendations