Assessment of temporal variations of water quality in inland water bodies using atmospheric corrected satellite remotely sensed image data

  • Diofantos G. HadjimitsisEmail author
  • Chris Clayton


Although there have been many studies conducted on the use of satellite remote sensing for water quality monitoring and assessment in inland water bodies, relatively few studies have considered the problem of atmospheric intervention of the satellite signal. The problem is especially significant when using time series multi-spectral satellite data to monitor water quality surveillance in inland waters such as reservoirs, lakes, and dams because atmospheric effects constitute the majority of the at-satellite reflectance over water. For the assessment of temporal variations of water quality, the use of multi-date satellite images is required so atmospheric corrected image data must be determined. The aim of this study is to provide a simple way of monitoring and assessing temporal variations of water quality in a set of inland water bodies using an earth observation- based approach. The proposed methodology is based on the development of an image-based algorithm which consists of a selection of sampling area on the image (outlet), application of masking and convolution image processing filter, and application of the darkest pixel atmospheric correction. The proposed method has been applied in two different geographical areas, in UK and Cyprus. Mainly, the method has been applied to a series of eight archived Landsat-5 TM images acquired from March 1985 up to November 1985 of the Lower Thames Valley area in the West London (UK) consisting of large water treatment reservoirs. Finally, the method is further tested to the Kourris Dam in Cyprus. It has been found that atmospheric correction is essential in water quality assessment studies using satellite remotely sensed imagery since it improves significantly the water reflectance enabling effective water quality assessment to be made.


Outlet Temporal variations Water quality Atmospheric correction Remote sensing 


  1. Arenz, R. F., Lewis, W. M., & Saunders, J. F. (1996). Determination of chlorophyll and dissolved organic carbon from reflectance data for Colorado reservoirs. International Journal of Remote Sensing, 17(8), 1547–1566. doi:10.1080/01431169608948723.CrossRefGoogle Scholar
  2. Baban, S. M. J. (1993). Detecting water quality parameters in the Norfolk Broads, UK, using Landsat imagery. International Journal of Remote Sensing, 14(7), 1247–1267. doi:10.1080/01431169308953955.CrossRefGoogle Scholar
  3. Campbell, J. B. (2007). Introduction to remote sensing, 4th edn. London: Guilford.Google Scholar
  4. Carpenter, D. J., & Carpenter, S. M. (1983). Modeling inland water quality using Landsat data. Remote Sensing of Environment, 13, 345–352. doi:10.1016/0034-4257(83)90035-4.CrossRefGoogle Scholar
  5. Chen, Q., Zhang, Y., & Hallikainen, M. (2007). Water quality monitoring using remote sensing in support of the EU water framework directive (WFD): A case study in the Gulf of Finland. Environmental Monitoring and Assessment, 124(1–3), 157–166. doi:10.1007/s10661-006-9215-8.CrossRefGoogle Scholar
  6. Cox, R. M., Forsythe, R. D., Vaughan, G. E., & Olmsted, L. L. (1998). Assessing water quality in Catawba River reservoirs using Landsat thematic mapper satellite data. Lake and Reservoir Management, 14(4), 405–416.CrossRefGoogle Scholar
  7. Dekker, A. G., Malthus, T. J. M., et al. (1995). In F. M. Danson & S. E. Plummer (Eds.), The remote sensing of inland water quality. Advances in environmental remote sensing (pp. 123–142). Chichester: Wiley.Google Scholar
  8. Dekker, A. G., Vos, R. J., & Peters, S. W. M. (2001). Comparison of remote sensing data, model results and in situ data for total suspended matter (TSM) in the southern Frisian lakes. The Science of the Total Environment, 268, 197–214. doi:10.1016/S0048-9697(00)00679-3.CrossRefGoogle Scholar
  9. Dewidar, K., & Khedr, A. (2001). Water quality assessment with simultaneous Landsat-5 TM at Manzala Lagoon, Egypt. Hydrobiologia, 457(1–3), 49–58(10).CrossRefGoogle Scholar
  10. Erdas, Inc. (2008). Erdas IMAGINE—tour guides. Atlanta: Erdas, Inc.Google Scholar
  11. Giardino, C., Pepe, M., Brivio, P. A., Ghezzi, P., & Zilioli, E. (2001). Detecting chlorophyll, Secchi-disk depth and surface temperature in a sub-alpine lake using Landsat imagery. The Science of the Total Environment, 268, 19–29. doi:10.1016/S0048-9697(00)00692-6.CrossRefGoogle Scholar
  12. Gitelson, A., Garbuzov, G., Szilagy, F., Mittenzwey, K. H., Kranielli, A., & Kaiser, A. (1993). Quantitative remote sensing methods for real-time monitoring of inland water quality. International Journal of Remote Sensing, 14, 1269–1295. doi:10.1080/01431169308953956.CrossRefGoogle Scholar
  13. Hadjimitsis, D. G. (1999). The application of atmospheric correction algorithms in the satellite remote sensing of reservoirs. PhD Thesis, University of Surrey, School of Engineering in the Environment, Department of Civil Engineering, Guildford, UK.Google Scholar
  14. Hadjimitsis, D. G. (2008). Description of a new method for retrieving the aerosol optical thickness from satellite remotely sensed imagery using the maximum contrast value principle and the darkest pixel approach. Transactions in GIS Journal, 12(5), 633–644.Google Scholar
  15. Hadjimitsis, D. G., & Clayton, C. R. I. (2008). The use of an improved atmospheric correction algorithm for removing atmospheric effects from remotely sensed images using an atmosphere-surface simulation and meteorological data. Meteorological Applications Journal, 15(3), 381–387. doi:10.1002/met.80.CrossRefGoogle Scholar
  16. Hadjimitsis, D. G., Clayton, C. R. I., Retalis, A., & Spanos, K. (2000a). Investigating the potential of using satellite remote sensing for the assessment of water quality in large dams, and irrigation demand, in Cyprus. In Proceedings 26th annual conference and exhibition of the remote sensing society, RSS2000. University of Leicester.Google Scholar
  17. Hadjimitsis, D. G., Clayton, C. R. I., & Hope, V. S. (2000b). The importance of accounting for atmospheric effects in satellite remote sensing: A case study from the Lower Thames Valley Area, UK. In Proceedings ASCE conference—space and robotics 2000, February 2000, New Mexico, USA, sponsored by the ASCE and co-sponsored by NASA and SANDIA National Laboratories (pp. 194–201). ISBN 0-7844-0479-8.Google Scholar
  18. Hadjimitsis, D. G., Clayton, C. R. I., & Retalis, A. (2003). Darkest pixel atmospheric correction algorithm: A revised procedure for environmental applications of satellite remotely sensed imagery. In Proceedings 10th international symposium on remote sensing (p. 414). 8–12/9/2003, Barcelona—Spain, organised by NASA, SPIE CONFERENCE (2003).Google Scholar
  19. Hadjimitsis, D. G., Clayton, C. R. I., & Hope, V. S. (2004). An assessment of the effectiveness of atmospheric correction algorithms through the remote sensing of some reservoirs. International Journal of Remote Sensing, 25(18), 3651–3674. doi:10.1080/01431160310001647993.CrossRefGoogle Scholar
  20. Hadjimitsis, D. G., Hadjimitsis, M. G., Clayton, C. R. I., & Clarke, B. (2006). Monitoring turbidity in Kourris Dam in Cyprus utilizing Landsat TM remotely sensed data. Water Resources Management: An International Journal, 20(3), 449–465. doi:10.1007/s11269-006-3089-y.CrossRefGoogle Scholar
  21. Härmä, P., Vepsäläinen, J., Hannonen, T., Pyhälahti, T., Kämäri, J., Kallio, K., et al. (2001). Detection of water quality using simulated satellite data and semi-empirical algorithms in Finland. The Science of the Total Environment, 268, 107–121. doi:10.1016/S0048-9697(00)00688-4.CrossRefGoogle Scholar
  22. Harris, G. P., Bukata, R. P., & Brutton, J. E. (1976). Satellite observations of water quality. Transportation Engineering Journal, TE3, 537–554.Google Scholar
  23. Kallio, K., Pulliainen, J., & Ylöstalo, P. (2005). MERIS, MODIS and ETM channel configurations in the estimation of lake water quality from subsurface reflectance with semi-analytical and empirical algorithms. Geophysica, 41, 31–55.Google Scholar
  24. Kloiber, S. M., Brezonik, P. L., Olmanson, L. G., & Bauer, M. E. (2002a). A procedure for regional lake water clarity assessment using Landsat multispectral data. Remote Sensing of Environment, 82, 38–47. doi:10.1016/S0034-4257(02)00022-6.CrossRefGoogle Scholar
  25. Kloiber, S. M., Brezonik, P. L., & Bauer, M. E. (2002b). Application of Landsat imagery to regional-scale assessments of lake clarity. Water Research, 36, 4330–4340. doi:10.1016/S0043-1354(02)00146-X.CrossRefGoogle Scholar
  26. Lathrop, R. G. (1992). Landsat Thematic Mapper monitoring of turbid inland water quality. Photogrammetric Engineering and Remote Sensing, 58(4), 465–470.Google Scholar
  27. Lathrop, R. G., & Lillesand, T. M. (1986). Use of Thematic Mapper data to assess water quality in Green Bay and Central Lake Michigan. Photogrammetric Engineering and Remote Sensing, 52(5), 671–680.Google Scholar
  28. Lillesand, T. M., Johnson, W. L., Deuell, R. L., Lindstrom, O. M., & Meisner, D. E. (1983). Use of Landsat data to predict the trophic state of Minnesota lakes. Photogrammetric Engineering and Remote Sensing, 49(2), 219–229.Google Scholar
  29. Mather, P. (2004). Computer processing of remotely–sensed images: An introduction, 3rd edn. Chichester: Wiley.Google Scholar
  30. Mayo, M., Gitelson, A., Yacobi, Y. Z., & Ben-Avraham, Z. (1995). Chlorophyll distribution in Lake Kinneret determined from Landsat Thematic Mapper data. International Journal of Remote Sensing, 16(1), 175–182. doi:10.1080/01431169508954386.CrossRefGoogle Scholar
  31. Nellis, M. D., Harrington, J. A., & Jaiping, W. (1998). Remote sensing of temporal and spatial variations in pool size, suspended sediment, turbidity, and Secchi depth in Tuttle Creek Reservoir, Kansas: 1993. Geomorphology, 21(3–4), 281–293. doi:10.1016/S0169-555X(97)00067-6.CrossRefGoogle Scholar
  32. Ormeci, C., Sertel, E., Sarikaya, O., Ormeci, C., Sertel, E., & Sarikaya, O. (2008). Determination of chlorophyll-a amount in Golden Horn, Istanbul, Turkey using IKONOS and in situ data. Environmental Monitoring and Assessment, 139, 0167–6369.Google Scholar
  33. Pozdnyakov, D., Shuchman, R., Korosov, A., & Hatt, C. (2005). Operational algorithm for the retrieval of water quality in the Great Lakes. Remote Sensing of Environment, 97, 352–370. doi:10.1016/j.rse.2005.04.018.CrossRefGoogle Scholar
  34. Pulliainen, J., Kallio, K., Eloheimo, K., Koponen, S., Servomaa, H., Hannonen, T., et al. (2001). A semi-operational approach to water quality retrieval from remote sensing data. Science of the Total Environment, 268(1–3), 79–93.CrossRefGoogle Scholar
  35. Verdin, J. P. (1985). Monitoring water quality conditions in a large western reservoir with Landsat imagery. Photogrammetric Engineering and Remote Sensing, 51(3), 343–353.Google Scholar
  36. Vincent, R. K., Qin, X., Michael, R., McKay, L., Miner, J., Czajkowski, K., et al. (2004). Phycocyanin detection form LANDSAT TM data for mapping cyanobacterial blooms in Lake Erie. Remote Sensing of Environment, 89, 381–392. doi:10.1016/j.rse.2003.10.014.CrossRefGoogle Scholar
  37. Wang, Y., Xia, H., Fu, J., & Sheng, G. (2004). Water quality change in reservoirs of Shenzhen, China: Detection using LANSAT/TM data. The Science of the Total Environment, 328, 195–206. doi:10.1016/j.scitotenv.2004.02.020.CrossRefGoogle Scholar
  38. Weiqi, H. E., Chen, S., Xuehua, L., & Chen, J. (2008). Water quality monitoring in a slightly-polluted inland water body through remote sensing—case study of the Guanting Reservoir in Beijing, China. Frontiers of Environmental Science & Engineering in China, 2(2), 163–171. doi:10.1007/s11783-008-0027-7.CrossRefGoogle Scholar
  39. Zhang, Y., Pulliainen, J., Koponen, S., & Hallikainen, M. (2002). Application of an empirical neural network to surface water quality estimation in the Gulf of Finland using combined optical data and microwave data. Remote Sensing of Environment, 81(2–3), 327–336. doi:10.1016/S0034-4257(02)00009-3.CrossRefGoogle Scholar
  40. Zhang, Y., Pulliainen, J., Koponen, S., & Hallikainen, M.(2003). Water quality retrievals from combined Landsat TM data and ERS-2 SAR data in the Gulf of Finland. IEEE Transactions on Geoscience and Remote Sensing, 41(3), 622–629. doi:10.1109/TGRS.2003.808906.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Civil Engineering and Geomatics, Faculty of Engineering and TechnologyCyprus University of TechnologyLemesosCyprus
  2. 2.School of Civil Engineering and the EnvironmentUniversity of SouthamptonSouthamptonUK

Personalised recommendations