Environmental Monitoring and Assessment

, Volume 159, Issue 1–4, pp 51–62 | Cite as

Measuring in situ reaction rate constants in wetland sediments

  • Emma Bassein
  • Peter R. Jaffé


Wetlands are ecologically important and play a key role in many environmentally significant chemical reactions. However, an accurate way of measuring in situ reaction rates in wetland sediments has yet to be established. This study evaluates the feasibility of adapting the push–pull test often used to measure in situ kinetics in subsurface environments, to wetlands. Experiments comparing the rates obtained with two methods, the push–pull test and a steady-state flow-through reactor, were conducted in a constructed wetland microcosm. First-order kinetic rate constants were determined for both sulfate and chromate reduction using both methods. Chromate reduction rates showed good agreement between the two methods, while sulfate reduction rates determined by the two methods differed significantly. Since the analysis for the push–pull test is based on a first-order kinetic, this discrepancy is likely due to the non-first-order behavior of sulfate reduction under the given environmental conditions. The largest obstacle identified prohibiting the use of this method is the availability of a tracer that is conservative in the presence of plants.


Wetlands Push–pull test Reaction rates Sulfate Chromium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Addy, K., Kellogg, D. Q., Gold, A. J., Groffman, P. M., Ferendo, G., & Sawyer, C. (2002). In situ push–pull method to determine ground water denitrification in riparian zones. Journal of Environmental Quality, 31(3), 1017–1024.Google Scholar
  2. Baptista, J. D. C., Donnelly, T., Rayne, D., & Davenport, R. J. (2003). Microbial mechanisms of carbon removal in subsurface flow wetlands. Water Science and Technology, 48(5), 127–134.Google Scholar
  3. Bowman, R. S. (1984). Evaluation of some new tracers for soil–water studies. Soil Science Society of America Journal, 48(5), 987–993.CrossRefGoogle Scholar
  4. Conrad, R., Aragno, M., & Seiler, W. (1983). The inability of hydrogen bacteria to utilize atmospheric hydrogen is due to threshold and affinity for hydrogen. FEMS Microbiology Letters, 18(3), 207–210. doi:10.1111/j.1574-6968.1983.tb00479.x.CrossRefGoogle Scholar
  5. Gray, J. L., & Sedlak, D. L. (2005). The fate of estrogenic hormones in an engineered treatment wetland with dense macrophytes. Water Environment Research, 77(1), 24–31. doi:10.2175/106143005X41582.CrossRefGoogle Scholar
  6. Guimera, J., & Candela, L. (1999). Comparison of different tracer methods to assess natural recharge. Physics and Chemistry of the Earth. Part B: Hydrology, Oceans and Atmosphere, 24(4), 343–347. doi:10.1016/S1464-1909(99)00011-8.CrossRefGoogle Scholar
  7. Haggerty, R., Schroth, M. H., & Istok, J. D. (1998). Simplified method of “push–pull” test data analysis for determining in situ reaction rate coefficients. Ground Water, 36(2), 314–324. doi:10.1111/j.1745-6584.1998.tb01097.x.CrossRefGoogle Scholar
  8. Hangen, E., Gerke, H. H., Schaaf, W., & Huttl, R. F. (2005). Assessment of preferential flow processes in a forest-reclaimed lignitic mine soil by multicell sampling of drainage water and three tracers. Journal of Hydrology (Amsterdam), 303(1–4), 16–37. doi:10.1016/j.jhydrol.2004.07.009.CrossRefGoogle Scholar
  9. Haring, V., & Conrad, R. (1994). Demonstration of 2 different H2-oxidizing activities in soil using an H-2 consumption and a tritium exchange assay. Biology and Fertility of Soils, 17(2), 125–128. doi:10.1007/BF00337744.CrossRefGoogle Scholar
  10. Ingvorsen, K., & Jorgensen, B. B. (1984). Kinetics of sulfate uptake by fresh-water and marine species of desulfovibrio. Archives of Microbiology, 139(1), 61–66. doi:10.1007/BF00692713.CrossRefGoogle Scholar
  11. Inubushi, K., Hori, K., Matsumoto, S., & Wada, H. (1997). Anaerobic decomposition of organic carbon in paddy soil in relation to methane emission to the atmosphere. Water Science and Technology, 36(6–7), 523–530. doi:10.1016/S0273-1223(97)00564-7.CrossRefGoogle Scholar
  12. Istok, J. D., Humphrey, M. D., Schroth, M. H., Hyman, M. R., & OReilly, K. T. (1997). Single-well, “push–pull” test for in situ determination of microbial activities. Ground Water, 35(4), 619–631. doi:10.1111/j.1745-6584.1997.tb00127.x.CrossRefGoogle Scholar
  13. Kaspar, H. F. (1982). Denitrification in marine sediment—measurement of capacity and estimate of in situ rate. Applied and Environmental Microbiology, 43(3), 522–527.Google Scholar
  14. Laverman, A. M., Van Cappellen, P., van Rotterdam-Los, D., Pallud, C., & Abell, J. (2006). Potential rates and pathways of microbial nitrate reduction in coastal sediments. FEMS Microbiology Ecology, 58(2), 179–192. doi:10.1111/j.1574-6941.2006.00155.x.CrossRefGoogle Scholar
  15. Maher, K., Steefel, C. I., DePaolo, D. J., & Viani, B. E. (2006). The mineral dissolution rate conundrum: Insights from reactive transport modeling of U isotopes and pore fluid chemistry in marine sediments. Geochimica et Cosmochimica Acta, 70(2), 337–363. doi:10.1016/j.gca.2005.09.001.CrossRefGoogle Scholar
  16. Mali, N., Urbanc, J., & Leis, A. (2007). Tracing of water movement through the unsaturated zone of a coarse gravel aquifer by means of dye and deuterated water. Environmental Geology, 51(8), 1401–1412. doi:10.1007/s00254-006-0437-4.CrossRefGoogle Scholar
  17. Marxsen, J., & Fiebig, D. M. (1993). Use of perfused cores for evaluating extracellular enzyme-activity in stream-bed sediments. FEMS Microbiology Ecology, 13(1), 1–11. doi:10.1111/j.1574-6941.1993.tb00045.x.CrossRefGoogle Scholar
  18. Oremland, R. S., Umberger, C., Culbertson, C. W., & Smith, R. L. (1984). Denitrification in San-Francisco Bay intertidal sediments. Applied and Environmental Microbiology, 47(5), 1106–1112.Google Scholar
  19. Pallud, C., & Van Cappellen, P. (2006). Kinetics of microbial sulfate reduction in estuarine sediments. Geochimica et Cosmochimica Acta, 70(5), 1148–1162. doi:10.1016/j.gca.2005.11.002.CrossRefGoogle Scholar
  20. Paramasivam, S., Alva, A. K., Fares, A., & Sajwan, K. S. (2002). Fate of nitrate and bromide in an unsaturated zone of a sandy soil under citrus production. Journal of Environmental Quality, 31(2), 671–681.Google Scholar
  21. Pitterle, M. T., Andersen, R. G., Novak, J. T., & Widdowson, M. A. (2005). Push–pull tests to quantify in situ degradation rates at a phytoremediation site. Environmental Science & Technology, 39(23), 9317–9323. doi:10.1021/es0509275.CrossRefGoogle Scholar
  22. Roden, E. E., & Wetzel, R. G. (2002). Kinetics of microbial Fe(III) oxide reduction in freshwater wetland sediments. Limnology and Oceanography, 47(1), 198–211.Google Scholar
  23. Roychoudhury, A. N. (2004). Sulfate respiration in extreme environments: A kinetic study. Geomicrobiology Journal, 21(1), 33–43. doi:10.1080/01490450490253446.CrossRefGoogle Scholar
  24. Roychoudhury, A. N., & McCormick, D. W. (2006). Kinetics of sulfate reduction in a coastal aquifer contaminated with petroleum hydrocarbons. Biogeochemistry, 81(1), 17–31. doi:10.1007/s10533-006-9027-5.CrossRefGoogle Scholar
  25. Schnabel, R. R., Stout, W. L., & Shaffer, J. A. (1995). Uptake of a hydrologic tracer (bromide) by Ryegrass from well and poorly-drained soils. Journal of Environmental Quality, 24(5), 888–892.Google Scholar
  26. Whitmer, S., Baker, L., & Wass, R. (2000). Loss of bromide in a wetland tracer experiment. Journal of Environmental Quality, 29(6), 2043–2045.Google Scholar
  27. Xu, S. P., Leri, A. C., Myneni, S. C. B., & Jaffe, P. R. (2004). Uptake of bromide by two wetland plants (Typha latifolia L. and Phragmites australis [Cav.] Trin. ex Steud.). Environmental Science & Technology, 38(21), 5642–5648. doi:10.1021/es049568o.CrossRefGoogle Scholar
  28. Zazo, J. A., Paull, J. S., & Jaffe, P. R. (2008). Influence of plants on the reduction of hexavalent chromium in wetland sediments. Environmental Pollution, 156, 29–35. doi:10.1016/j.envpol.2008.01.006.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringPrinceton UniversityPrincetonUSA

Personalised recommendations