Environmental Monitoring and Assessment

, Volume 158, Issue 1–4, pp 593–608 | Cite as

Determination of the compositional change (1999–2006) in the pine forests of British Columbia due to mountain pine beetle infestation

  • Colin Robertson
  • Carson J. Q. Farmer
  • Trisalyn A. Nelson
  • Ian K. Mackenzie
  • Michael A. Wulder
  • Joanne C. White
Article

Abstract

The current mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreak in British Columbia and Alberta is the largest recorded forest pest infestation in Canadian history. We integrate a spatial hierarchy of mountain pine beetle and forest health monitoring data, collected between 1999 and 2006, with provincial forest inventory data, and generate three information products representing 2006 forest conditions in British Columbia: cumulative percentage of pine infested by mountain pine beetle, percentage of pine uninfested, and the change in the percentage of pine on the landscape. All input data were formatted to a standardized spatial representation (1 ha minimum mapping unit), with preference given to the most detailed monitoring data available at a given location for characterizing mountain pine beetle infestation conditions. The presence or absence of mountain pine beetle attack was validated using field data (n = 2054). The true positive rate for locations of red attack damage over all years was 92%. Classification of attack severity was validated using the Kruskal gamma statistic (γ = 0.49). Error between the survey data and field data was explored using spatial autoregressive (SAR) models, which indicated that percentage pine and year of infestation were significant predictors of survey error at α = 0.05. Through the integration of forest inventory and infestation survey data, the total area of pine infested is estimated to be between 2.89 and 4.14 million hectares. The generated outputs add value to existing monitoring data and provide information to support management and modeling applications.

Keywords

Mountain pine beetle Mapping Data integration Monitoring Infestation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldrich, R. C., Heller, R. C., & Bailey, W. F. (1958). Observation limits for aerial sketch mapping southern pine beetle in the southern Appalachians. Journal of Forestry, 56, 200–202.Google Scholar
  2. Aldstadt, J., & Getis, A. (2006). Using AMOEBA to create a spatial weights matrix and identify spatial clusters. Geographical Analysis, 38, 327–343. doi:10.1111/j.1538-4632.2006.00689.x.CrossRefGoogle Scholar
  3. Amman, G. D. (1973). Population changes of the mountain pine beetle in relation to elevation. Environmental Entomology, 2, 541–547.Google Scholar
  4. Bivand, R. (2002). Spatial econometrics functions in R: Classes and methods. Journal of Geographical Systems, 4, 405–421. doi:10.1007/s101090300096.CrossRefGoogle Scholar
  5. British Columbia Ministry of Forests. (1995). Bark beetle management guidebook. Victoria, BC, Canada: Forest Practices Branch.Google Scholar
  6. British Columbia Ministry of Forests. (2000). Forest health aerial overview survey stands for British Columbia., version 2.0. Victoria, BC, Canada: Forest Practices Branch and Canadian Forest Service.Google Scholar
  7. British Columbia Ministry of Forests. (2003). Timber supply and the mountain pine beetle infestation in British Columbia. Victoria, BC, Canada: Forest Analysis Branch.Google Scholar
  8. British Columbia Ministry of Forests and Range. (2006). Mountain pine beetle action plan 2006–2011: Sustainable forests, sustainable communities. Retrieved January 2008 from British Columbia Ministry of Forests and Range Web Site: http://www.for.gov.bc.ca/hfp/mountain_pine_beetle/actionplan/2006/Beetle_Action_Plan.pdf
  9. British Columbia Ministry of Sustainable Resource Management. (2002). Vegetation resources inventory: Photo interpretation procedures, version 2.4. Victoria, BC, Canada: Resources Inventory Committee.Google Scholar
  10. Burnham, K. P., & Anderson, D. R. (1998). Model selection and inference: A practical information-theoretic approach. NY: Springer.Google Scholar
  11. Carroll, A. L., Shore, T. L., & Safranyik, L. (2006). Direct control: Theory and practice. In L. Safranyik & B. Wilson (Eds.), The mountain pine beetle: A synthesis of biology, management, and impacts on Lodgepole Pine (pp. 155–172). Victoria, BC, Canada: Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre.Google Scholar
  12. Cliff, A., & Ord, J. K. (1981). Spatial processes models and applications. London: Pion Limited.Google Scholar
  13. Coops, N. C., Wulder, M. A., & White, J. C. (2006). Integrating remotely sensed and ancillary data sources to characterize a mountain pine beetle infestation. Remote Sensing of Environment, 30(2), 83–97. doi:10.1016/j.rse.2006.06.007.CrossRefGoogle Scholar
  14. Cressie, N. (1993). Statistics for spatial data. Toronto: John Wiley & Sons.Google Scholar
  15. Eng, M., Fall, A., Hughes, J., Shore, T., Riel, B., & Hall, P. (2004). Provincial level projection of the current mountain pine beetle outbreak: An overview of the model (BCMPB) and draft results of Year 1 of the project. Victoria, BC, Canada: Forest Research Branch.Google Scholar
  16. Geiszler, D., Gallucci, V., & Gara, R. (1980). Modelling the dynamics of mountain pine beetle aggregation in a lodgepole pine stand. Oecoligia, 46, 244–253. doi:10.1007/BF00540133.CrossRefGoogle Scholar
  17. Goodman, L. A., & Kruskal, W. H. (1954). Measures of association for cross classifications. Journal of the American Statistical Association, 49, 732–764. doi:10.2307/2281536.CrossRefGoogle Scholar
  18. Haining, R. (2003). Spatial data analysis: Theory and practice. NY: Cambridge University Press.Google Scholar
  19. Harris, J. W. E., & Dawson, A. F. (1979). Evaluation of aerial forest pest damage survey techniques in British Columbia. Information Report, BC-X-198. (p. 22) Victoria, BC, Canada: Canadian Forestry Service.Google Scholar
  20. Ihaka, I., & Gentelman, R. (1996). R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics, 5, 299–314. doi:10.2307/1390807.CrossRefGoogle Scholar
  21. Kissling, W. D., & Carl, G. (2008). Spatial autocorrelation and the selection of simultaneous autoregressive models. Global Ecology and Biogeography, 17, 59–71. doi:10.1111/j.1466-8238.2007.00379.x.CrossRefGoogle Scholar
  22. Kumar, L., Skidmore, A. K., & Knowles, E. (1997). Modelling topographic variation in solar radiation in a GIS environment. International Journal of Geographical Information Science, 11, 475–497. doi:10.1080/136588197242266.CrossRefGoogle Scholar
  23. Leckie, D. G., Cloney, E., & Joyce, S. P. (2005). Automated detection and mapping of crown discolouration caused by jake pine budworm with 2.5 m resolution multispectral imagery. International Journal of Applied Earth Observation and Geoinformation, 7, 61–77. doi:10.1016/j.jag.2004.12.002.CrossRefGoogle Scholar
  24. Lenzerini, M. (2002). Data integration: A theoretical perspective. In Proceedings of the symposium of database systems (PODS) (pp. 233–246). ACM, New York.Google Scholar
  25. Levin, S. (1992). The problem of pattern and scale in ecology. Ecology, 73, 1943–1967. doi:10.2307/1941447.CrossRefGoogle Scholar
  26. Logan, J. A., Régnière, J., & Powell, J. A. (2003). Assessing the impacts of global climate change on forest pests. Frontiers in Ecology and the Environment, 1, 130–137.CrossRefGoogle Scholar
  27. Mitchell, R., & Preisler, H. (1991). Analysis of spatial patterns of lodegepole pine attacked by outbreak populations of the mountain pine beetle. Forest Science, 37, 1390–1408.Google Scholar
  28. Nelson, T., Boots, B., White, K., & Smith, A. (2006a). The impact of treatment on mountain pine beetle infestation rates. BC Journal of Ecosystems & Management, 7, 20–36.Google Scholar
  29. Nelson, T., Boots, B., & Wulder, M. A. (2006b). Large-area mountain pine beetle infestations: Spatial data representation and accuracy. Forestry Chronicle, 82, 243–252.Google Scholar
  30. Nelson, T., Boots, B., Wulder, M. A., & Carroll, A. L. (2007). The environmental characteristics of mountain pine beetle infestation hot spots. BC Journal of Ecosystems & Management, 8, 91–108.Google Scholar
  31. Régnière, J., & Bentz, B. (2007). Modelling cold tolerance in the mountain pine beetle, Dendroctonus ponderosae. Journal of Insect Physiology, 53, 559–572. doi:10.1016/j.jinsphys.2007.02.007.CrossRefGoogle Scholar
  32. Reid, R. W. (1962). Biology of the mountain pine beetle, Dendroctonus monticolae Hopkins, in the east Kootenay region of British Columbia. I. Life cycle, brood development, and flight periods. Canadian Entomologist, 94, 531–538.CrossRefGoogle Scholar
  33. Safranyik, L., & Carroll, A. L. (2006). The biology and epidemiology of the mountain pine beetle in lodgepole pine forests. In L. Safranyik & B. Wilson (Eds.), The mountain pine beetle: A synthesis of biology, management, and impacts on lodgepole pine (pp. 3–66). Victoria, BC, Canada: Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre.Google Scholar
  34. Safranyik, L., Shrimpton, D., & Whitney, H. (1974). Management of lodgepole pine to reduce losses from the mountain pine beetle. Forest Technical Report No.1 (p. 25). Victoria, BC, Canada: Canadian Forest Service, Pacific Forest Research Centre.Google Scholar
  35. Safranyik, L., Linto, D., Silversides, R., & McMullen, L. (1992). Dispersal of released mountain pine beetles under the canopy of a mature lodgepole pine stand. Journal of Applied Entomology, 113, 441–450.CrossRefGoogle Scholar
  36. Shore, T., & Safranyik, L. (1992). Susceptibility and risk rating systems for the mountain pine beetle in lodgepole pine stands. Victoria, BC, Canada: Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre.Google Scholar
  37. Taylor, S. W., Carroll, A. L., Alfaro, R. L., & Safranyik, L. (2006). Forest, climate and mountain pine beetle outbreak dynamics in western Canada. In L. Safranyik & B. Wilson (Eds.), The mountain pine beetle: A synthesis of biology, management, and impacts on lodgepole pine (pp. 69–74). Victoria, BC, Canada: Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre.Google Scholar
  38. Westfall, J. (2007). 2007 summary of forest health conditions in British Columbia. Victoria, BC, Canada: Forest Practices Branch.Google Scholar
  39. White, J. C., Wulder, M. A., & Grills, D. (2006). Detection and mapping mountain pine beetle red-attack damage with SPOT-5 10-m multispectral imagery. BC Journal of Ecosystems and Management, 7, 105–118.Google Scholar
  40. Wulder, M. A., White, J. C., Bentz, B. J., & Ebata, T. (2006a). Augmenting the existing survey hierarchy for mountain pine beetle red-attack damage with satellite remotely sensed data. Forestry Chronicle, 82, 187–202.Google Scholar
  41. Wulder, M. A., Dymond, C. C., White, J. C., & Erickson, B. (2006b). Detection, mapping and monitoring of the mountain pine beetle. In L. Safranyik & B. Wilson (Eds.), The mountain pine beetle: A synthesis of biology, management, and impacts on lodgepole pine (pp. 123–154). Victoria, BC, Canada: Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Colin Robertson
    • 1
  • Carson J. Q. Farmer
    • 1
  • Trisalyn A. Nelson
    • 1
  • Ian K. Mackenzie
    • 1
  • Michael A. Wulder
    • 2
  • Joanne C. White
    • 2
  1. 1.Spatial Pattern Analysis & Research (SPAR) Laboratory, Department of GeographyUniversity of VictoriaVictoriaCanada
  2. 2.Canadian Forest Service (Pacific Forestry Centre), Natural Resources CanadaVictoriaCanada

Personalised recommendations