Environmental Monitoring and Assessment

, Volume 158, Issue 1–4, pp 307–314 | Cite as

A computer-based program for the assessment of water-induced contamination in irrigated lands

  • Jesús CausapéEmail author


The non-point characteristic of agrarian contamination hinders its quantification and assignation to a specific territory. The objectives of this work were to unify methodological criteria for agro-environmental evaluation and to propose indices to quantify irrigation-induced contami nation. The computer program Irrigation Land Environmental Evaluation Tool (in Spanish, EMR; was developed to evaluate the quality of irrigation and the agro-environmental impacts, based on the water, salt, and nitrate balances in the hydrological irrigation basins. The behavior of the proposed indices was analyzed using data registered in various irrigation districts in the Ebro valley (Spain). The Salt and Nitrate Contamination Indices (SCI and NCI, respectively) were based on the unitary mass of exported pollutants, corrected by the “natural and socioeconomic” conditions of the irrigation districts evaluated. SCI and NCI were related to water and nitrogen use, key factors in minimizing contamination. SCI and NCI admit a greater mass of exported pollutants in disadvantaged irrigation districts, which does not allow the exclusion of adequate management in any evaluated irrigation lands. EMR is a user-friendly tool at the service of the agro-environmental surveillance of irrigation lands.


Agro-environmental evaluation Water use Agrarian contamination Saline Contamination Index Nitrate Contamination Index 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, R., Pereira, L., Raes, D., & Smith, M. (1998). Crop evapotranspiration. Guidelines for computing crop water requirements (300 pp.). FAO Irrigation and Drainage Paper No. 56. Roma (Italia): FAO.Google Scholar
  2. Causapé, J., & Pérez, S. (2007). Evaluador Medioambiental de Regadíos. EMR 1.0. Manual de Usuarios (26 pp.). Available in:
  3. Causapé, J., Quílez, D., & Aragüés, R. (2004a). Assessment of irrigation and environmental quality at the hydrological basin level. I: Irrigation quality. Agricultural Water Management, 70, 195–209.Google Scholar
  4. Causapé, J., Quílez, D., & Aragüés, R. (2004b). Assessment of irrigation and environmental quality at the hydrological basin level. II: Salt and nitrate loads in irrigation return flows. Agricultural Water Management, 70, 211–218.Google Scholar
  5. Causapé, J., Quílez, D., & Aragüés, R. (2006). Irrigation efficiency and quality of irrigation return flows in the Ebro River Basin: An overview. Environmental Monitoring and Assessment, 117, 451–461. doi:10.1007/s10661-006-0763-8.CrossRefGoogle Scholar
  6. Cavero, J., Beltrán, A., & Aragüés, R. (2003). Nitrate exported in the drainage water of two sprinkler irrigated watershed. Journal of Environmental Quality, 32, 916–926.CrossRefGoogle Scholar
  7. European Union (1991). Council Directive 91/676/EEC of 12 December 1991 concerning the protection of waters against pollution caused bay nitrates from agricultural sources. Official Journal, L375, 1–8.Google Scholar
  8. European Union (1998). Council Directive 98/83/CE of 3 November 1998 imposed to the surface waters devoted to the production of water for human consumption. Official Journal, L330, 32–54.Google Scholar
  9. European Union (2000). Directive 2000/60 of the European Parliament and of the Council establishing a framework for community action in the field of water pollution. Official Journal, L327, 1–72.Google Scholar
  10. European Union (2006). Directive 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the protection of groundwater against pollution and deterioration. Official Journal, L372/19, 19–31.Google Scholar
  11. Isaaks, E., & Srivastava, R. M. (1989). An introduction to applied geostatistics (p. 561). New York: Oxford University.Google Scholar
  12. Isidoro, D., Quílez, D., & Aragüés, R. (2006a). Environmental impact of irrigation in La Violada District (Spain): I. Salt export patterns. Journal of Environmental Quality, 35, 766–775. doi:10.2134/jeq2005.0064.CrossRefGoogle Scholar
  13. Isidoro, D., Quílez, D., & Aragüés, R. (2006b). Environmental impact of irrigation in La Violada District (Spain): II. Nitrogen fertilization and nitrate export patterns in drainage water. Journal of Environmental Quality, 35, 776–785. doi:10.2134/jeq2005.0065.CrossRefGoogle Scholar
  14. Lasanta, T., Mosch, W., Pérez-Rontomé, M. C., Navas, A., Machín, J., & Maestro, M. (2002). Effects of irrigation on water salinization in semi-arid environments: A case study in Las Bardenas, Central Ebro Depression, Spain. In J. M. García-Ruíz, A. Jones, & J. Arnáez (Eds.), Environmental change and water sustainability (pp. 198–218). Instituto Pirenaico de Ecología.Google Scholar
  15. Orús, F., & Sin, E. (2006). El balance del nitrógeno en la agricultura. In Fertilización Nitrogenada. Guía de actualización. Informaciones Técnicas (196 pp.). Centro de Transferencia Agroalimentaria. Ed. Gobierno de Aragón.Google Scholar
  16. Salvador, R. (2003). Estudio de las pérdidas por evaporación y arrastre en los sistemas de riego por aspersión: Diferencias entre riegos diurnos y nocturnos. Proyecto fin de carrera de Ingeniería Agrónoma (206 pp.). Universidad de Lérida, Escuela Técnica Superior de Ingeniería Agraria. Departamento de Medio Ambiente y Ciencias del Suelo.Google Scholar
  17. Tedeschi, A., Beltrán, A., & Aragüés, R. (2001). Irrigation management and Hydrosalinity balance in a semi-arid area of the middle Ebro River Basin (Spain). Agricultural Water Management, 49, 31–50. doi:10.1016/S0378-3774(00)00117-7.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA)ZaragozaSpain

Personalised recommendations