Spatial succession modeling of biological communities: a multi-model approach



Strong spatial correlation may exist in the spatial succession of biological communities, and the spatial succession can be mathematically described. It was confirmed by our study on spatial succession of both plant and arthropod communities along a linear transect of natural grassland. Both auto-correlation and cross-correlation analyses revealed that the succession of plant and arthropod communities exhibited a significant spatial correlation, and the spatial correlation for plant community succession was stronger than arthropod community succession. Theoretically it should be reasonable to infer a site’s community composition from the last site in the linear transect. An artificial neural network for state space modeling (ANNSSM) was developed in present study. An algorithm (i.e., Importance Detection Method (IDM)) for determining the relative importance of input variables was proposed. The relative importance for plant families Gramineae, Compositae and Leguminosae, and arthropod orders Homoptera, Diptera and Orthoptera, were detected and analyzed using IDM. ANNSSM performed better than multivariate linear regression and ordinary differential equation, while ordinary differential equation exhibited the worst performance in the simulation and prediction of spatial succession of biological communities. A state transition probability model (STPM) was proposed to simulate the state transition process of biological communities. STPM performed better than multinomial logistic regression in the state transition modeling. We suggested a novel multi-model framework, i.e., the joint use of ANNSSM and STPM, to predict the spatial succession of biological communities. In this framework, ANNSSM and STPM can be separately used to simulate the continuous and discrete dynamics.


Plant and arthropod communities Spatial succession Modeling Artificial neural network State transition probability model Multinomial logistic regression Ordinary differential equation Multivariate linear regression 


  1. Abrahart, R. J., & White, S. M. (2001). Modelling sediment transfer in Malawi: Comparing backpropagation neural network solutions against a multiple linear regression benchmark using small data set. Physics and Chemistry of the Earth (B), 26(1), 19–24.Google Scholar
  2. Acharya, C., Mohanty, S., Sukla, L. B., & Misra, V. N. (2006). Prediction of sulphur removal with Acidithiobacillus sp. using artificial neural networks. Ecological Modelling, 190(1–2), 223–230. doi:10.1016/j.ecolmodel.2005.02.021.CrossRefGoogle Scholar
  3. Almasri, M. N., & Kaluarachchi, J. J. (2005). Modular neural networks to predict the nitrate distribution in ground water using the on-ground nitrogen loading and recharge data. Environmental Modelling & Software, 20, 851–871. doi:10.1016/j.envsoft.2004.05.001.CrossRefGoogle Scholar
  4. Altieri, M. A. (1994). Biodiversity and pest management in agroecosystems. New York: Haworth.Google Scholar
  5. Altieri, M. A. (1995). Agroecology: The science of sustainable agriculture. Boulder: Westview.Google Scholar
  6. Altieri, M. A., & Letourneau, D. K. (1984). Vegetation diversity and insect pest outbreaks. CRC. Critical Reviews in Plant Sciences, 2, 131–169.CrossRefGoogle Scholar
  7. Andow, D. A. (1991). Vegetational diversity and arthropod population response. Annual Review of Entomology, 36, 561–586. doi:10.1146/annurev.en.36.010191.003021.CrossRefGoogle Scholar
  8. Balaguer Ballester, E. B., Valls, G. C. I., Carrasco-Rodriguez, J. L., Olivas, E. S., & del Valle-Tascon, S. (2002). Effective 1-day ahead prediction of hourly surface ozone concentrations in eastern Spain using linear models and neural networks. Ecological Modelling, 156(1), 27–41. doi:10.1016/S0304-3800(02)00127-8.CrossRefGoogle Scholar
  9. Bork, E. W., Hudson, R. J., & Bailey, A. W. (1997). Upland plant community classification in Elk Island National Park, Alberta, Canada, using disturbance history and physical site factors. Plant Ecology, 130, 171–190. doi:10.1023/A:1009718908103.CrossRefGoogle Scholar
  10. Bradshaw, C. J. A., Davis, L. S., Purvis, M., Zhou, Q., & Benwell, G. L. (2002). Using artificial neural networks to model the suitability of coastline for breeding by New Zealand fur seals (Arctocephalus forsteri). Ecological Modelling, 148(2), 111–131. doi:10.1016/S0304-3800(01)00425-2.CrossRefGoogle Scholar
  11. Cereghino, R., Giraudel, J. L., & Compin, A. (2001). Spatial analysis of stream invertebrates distribution in the Adour-Garonne drainage basin (France), using Kohonen self organizing maps. Ecological Modelling, 146, 167–180. doi:10.1016/S0304-3800(01)00304-0.CrossRefGoogle Scholar
  12. Chapin, F. S. (2003). Effects of plant traits on ecosystem and regional processes: A conceptual framework for predicting the consequences of global change. Annals of Botany, 91, 455–459. doi:10.1093/aob/mcg041.CrossRefGoogle Scholar
  13. Chen, L. Z., & Ma, K. P. (2001). Biodiversity science: Principles and practices. Shanghai: Shanghai Science and Technology Press.Google Scholar
  14. Dong, B. L., Ji, L. Z., Wei, C. Y., Wang, M., & Xiao, D. M. (2005). Relationship between plant community and insect community in Korean pine broad-leaved mixed forest of Changbai Mountain. Chinese Journal of Ecology, 24(9), 1013–1016.Google Scholar
  15. Fecit (2003). Analysis and design of neural networks in MATLAB 6.5. Beijing: Electronics Industry Press.Google Scholar
  16. Filippi, A. M., & Jensen, J. R. (2006). Fuzzy learning vector quantization for hyperspectral coastal vegetation classification. Remote Sensing of Environment, 100, 512–530. doi:10.1016/j.rse.2005.11.007.CrossRefGoogle Scholar
  17. Gevrey, M., Dimopoulos, I., & Lek, S. (2006). Two-way interaction of input variables in the sensitivity analysis of neural network models. Ecological Modelling, 195(1–2), 43–50. doi:10.1016/j.ecolmodel.2005.11.008.CrossRefGoogle Scholar
  18. Grime, J. P. (1998). Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. Journal of Ecology, 86, 902–910. doi:10.1046/j.1365-2745.1998.00306.x.CrossRefGoogle Scholar
  19. Hagan, M. T., Demuth, H. B., & Beale, M. H. (1996). Neural network design. Boston: PWS.Google Scholar
  20. He, R. B. (2001). MATLAB 6: Engineering computation and applications. Chongqing: Chongqing University Press.Google Scholar
  21. Herrick, J. E., Bestelmeyer, B. T., Archer, S., Tugel, A. J., & Brown, J. R. (2006). An integrated framework for science-based arid land management. Journal of Arid Environments, 65, 319–335. doi:10.1016/j.jaridenv.2005.09.003.CrossRefGoogle Scholar
  22. Jaarsma, N. G., Bergman, M., Schulze, F. H., & de Vaate, A. B. (2007). Macro-invertebrates in a dynamic river environment: Analysis of time series from artificial substrates, using a ‘white box’ neural network modelling method. Aquatic Ecology, 41(3), 413–425. doi:10.1007/s10452-005-9016-0.CrossRefGoogle Scholar
  23. Jackson, R. D., & Bartolome, J. W. (2002). A state-transition approach to understanding nonequilibrium plant community dynamics in Californian grasslands. Plant Ecology, 162, 49–65. doi:10.1023/A:1020363603900.CrossRefGoogle Scholar
  24. Jasinski, J. P., & Payette, S. (2005). The creation of alternative stable states in the sourthern boreal forest, Québec, Canada. Ecological Monographs, 75, 561–583. doi:10.1890/04-1621.CrossRefGoogle Scholar
  25. Jia, C. S., Chi, D. F., & Hu, Y. Y. (2006). Effects of forest plant communities on forest insect communities. Journal of Anhui Agricultual Sciences 34(9), 1871–1872.Google Scholar
  26. Jørgensen, S. E., Verdonschot, P., & Lek, S. (2002). Explanation of the observed structure of functional feeding groups of aquatic macro-invertebrates by an ecological model and the maximum exergy principle. Ecological Modelling, 158(3), 223–231. doi:10.1016/S0304-3800(02)00233-8.CrossRefGoogle Scholar
  27. Kemp, S. J., Zaradic, P., & Hansen, F. (2007). An approach for determining relative input parameter importance and significance in artificial neural networks. Ecological Modelling, 204, 326–334. doi:10.1016/j.ecolmodel.2007.01.009.CrossRefGoogle Scholar
  28. Kilic, H., Soyupak, S., Tüzün, İ., İnce, Ö., & Başaran, G. (2007). An automata networks based preprocessing technique for artificial neural network modelling of primary production levels in reservoirs. Ecological Modelling, 201(3–4), 359–368. doi:10.1016/j.ecolmodel.2006.09.026.CrossRefGoogle Scholar
  29. Lavorel, S., & Garnier, E. (2002). Predicting the effects of environmental change on plant community composition and ecosystem functioning: Revising the Holy Grail. Functional Ecology, 16, 545–556. doi:10.1046/j.1365-2435.2002.00664.x.CrossRefGoogle Scholar
  30. Marchant, J. A., & Onyango, C. M. (2003). Comparison of a Bayesian classifier with a multilayer feed-forward neural network using the example of plant/weed/soil discrimination. Computers and Electronics in Agriculture, 39, 3–22. doi:10.1016/S0168-1699(02)00223-5.CrossRefGoogle Scholar
  31. Mathworks (2002). Neural network toolbox, MATLAB 6. US: Mathworks.Google Scholar
  32. McGavin, G. C. (2000). Insects, spiders and other terrestrial arthropods. London: Dorling Kindersley.Google Scholar
  33. McKenna, J. E. (2005). Application of neural networks to prediction of fish diversity and salmonid production in the Lake Ontario basin. Transactions of the American Fisheries Society, 134(1), 28–43. doi:10.1577/FT04-044.1.CrossRefGoogle Scholar
  34. Moisen, G. G., & Frescino, T. S. (2002). Comparing five modelling techniques for predicting forest characteristics. Ecological Modelling, 157(2–3), 209–225. doi:10.1016/S0304-3800(02)00197-7.CrossRefGoogle Scholar
  35. Nagendra, S. M. S., & Khare, M. (2006). Artificial neural network approach for modelling nitrogen dioxide dispersion from vehicular exhaust emissions. Ecological Modelling, 190(1–2), 99–115. doi:10.1016/j.ecolmodel.2005.01.062.CrossRefGoogle Scholar
  36. Nour, M. H., Smith, D. W., El-Din, M. G., & Prepas, E. E. (2006). The application of artificial neural networks to flow and phosphorus dynamics in small streams on the Boreal Plain, with emphasis on the role of wetlands. Ecological Modelling, 191(1), 19–32. doi:10.1016/j.ecolmodel.2005.08.010.CrossRefGoogle Scholar
  37. Olden, J. D., & Jackson, D. A. (2002). Illuminating the “black box”: A randomization approach for understanding variable contributions in artificial neural networks. Ecological Modelling, 154(1–2), 135–150. doi:10.1016/S0304-3800(02)00064-9.CrossRefGoogle Scholar
  38. Olden, J. D., Joy, M. K., & Death, R. G. (2004). An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data. Ecological Modelling, 178, 389–397. doi:10.1016/j.ecolmodel.2004.03.013.CrossRefGoogle Scholar
  39. Olden, J. D., Joy, M. K., & Death, R. G. (2006). Rediscovering the species in community-wide predictive modeling. Ecological Applications, 16(4), 1449–1460. doi: 10.1890/1051-0761(2006)016[1449:RTSICP]2.0.CO;2.CrossRefGoogle Scholar
  40. Ozesmi, S. L., Tan, C. O., & Ozesmi, U. (2006). Methodological issues in building, training, and testing artificial neural networks in ecological applications. Ecological Modelling, 195(1–2), 83–93. doi:10.1016/j.ecolmodel.2005.11.012.CrossRefGoogle Scholar
  41. Pastor-Barcenas, O., Soria-Olivas, E., & Martın-Guerrero, J. D. (2005). Unbiased sensitivity analysis and pruning techniques in neural networks for surface ozone modeling. Ecological Modelling, 182, 149–158. doi:10.1016/j.ecolmodel.2004.07.015.CrossRefGoogle Scholar
  42. Pearson, R. G., Dawson, T. P., Berry, P. M., & Harrison, P. A. (2002). SPECIES: A spatial evaluation of climate impact on the envelope of species. Ecological Modelling, 154(3), 289–300. doi:10.1016/S0304-3800(02)00056-X.CrossRefGoogle Scholar
  43. Pimentel, D., Stachow, U., Takacs, D. A., & Brubaker, H. W. (1992). Conserving biological diversity in agricultural/forestry systems. Bioscience, 42(5), 354–362. doi:10.2307/1311782.CrossRefGoogle Scholar
  44. Quétier, F., Thébault, A., & Lavorel, S. (2007). Plant traits in a state and transition framework as markers of ecosystem response to land-use change. Ecological Monographs, 77(1), 33–52. doi:10.1890/06-0054.CrossRefGoogle Scholar
  45. Racca, J. M. J., Racca, R., Pienitz, R., & Prairie, Y. T. (2007). PaleoNet: New software for building, evaluating and applying neural network based transfer functions in paleoecology. Journal of Paleolimnology, 38(3), 467–472. doi:10.1007/s10933-006-9082-x.CrossRefGoogle Scholar
  46. Scardi, M., & Harding, L. W. Jr. (1999). Developing an empirical model of phytoplankton primary production: A neural network case study. Ecological Modelling, 120, 213–223. doi:10.1016/S0304-3800(99)00103-9.CrossRefGoogle Scholar
  47. Schultz, A., & Wieland, R. (1997). The use of neural networks in agroecologica modeling. Computers and Electronics in Agriculture, 18, 73–90. doi:10.1016/S0168-1699(97)00021-5.CrossRefGoogle Scholar
  48. Shanmuganathan, S., Sallis, P., & Buckeridge, J. (2006). Self-organising map methods in integrated modelling of environmental and economic systems. Environmental Modelling & Software, 21(9), 1247–1256. doi:10.1016/j.envsoft.2005.04.011.CrossRefGoogle Scholar
  49. Sharma, V., Negi, S. C., Rudra, R. P., & Yang, S. (2003). Neural networks for predicting nitrate–nitrogen in drainage water. Agricultural Water Management, 63, 169–183. doi:10.1016/S0378-3774(03)00159-8.CrossRefGoogle Scholar
  50. SPSS Inc. (2006). SPSS 15.0 for windows release Chicago: SPSS.Google Scholar
  51. Tan, C. O., Ozesmi, U., Beklioglu, M., Per, E., & Kurt, B. (2006). Predictive models in ecology: Comparison of performances and assessment of applicability. Ecology Informatics, 1(2), 195–211. doi:10.1016/j.ecoinf.2006.03.002.CrossRefGoogle Scholar
  52. Tison, J., Park, Y. S., Coste, M., Wasson, J. G., Rimet, F., Ector, L., et al. (2007). Predicting diatom reference communities at the French hydrosystem scale: A first step towards the definition of the good ecological status. Ecological Modelling, 203, 99–108. doi:10.1016/j.ecolmodel.2006.02.047.CrossRefGoogle Scholar
  53. Tosh, C. R., & Ruxton, G. D. (2007). The need for stochastic replication of ecological neural networks. Philo. Trans. The Royal Society B-Biological Sci, 362(1479), 455–460.Google Scholar
  54. Viotti, P., Liuti, G., & Di Genova, P. (2002). Atmospheric urban pollution: Applications of an artificial neural network (ANN) to the city of Perugia. Ecological Modelling, 148, 27–46. doi:10.1016/S0304-3800(01)00434-3.CrossRefGoogle Scholar
  55. Wilson, E. O. (1987). The little things that run the world. Conservation Biology, 1, 344–346. doi:10.1111/j.1523-1739.1987.tb00055.x.CrossRefGoogle Scholar
  56. Worner, S. P., & Gevrey, M. (2006). Modelling global insect pest species assemblages to determine risk of invasion. Journal of Applied Ecology, 43(5), 858–867. doi:10.1111/j.1365-2664.2006.01202.x.CrossRefGoogle Scholar
  57. Zhang, W. J. (2007a). Supervised neural network recognition of habitat zones of rice invertebrates. Stochastic Environmental Research and Risk Assessment, 21, 729–735. doi:10.1007/s00477-006-0085-y.CrossRefGoogle Scholar
  58. Zhang, W. J. (2007b). Methodology on ecology research. Guangzhou: Sun Yat-sen University Press.Google Scholar
  59. Zhang, W. J. (2007c). Computer inference of network of ecological interactions from sampling data. Environmental Monitoring and Assessment, 124, 253–261. doi:10.1007/s10661-006-9223-8.CrossRefGoogle Scholar
  60. Zhang, W. J., Bai, C. J., & Liu, G. D. (2007). Neural network modeling of ecosystems: A case study on cabbage growth system. Ecological Modelling, 201, 317–325. doi:10.1016/j.ecolmodel.2006.09.022.CrossRefGoogle Scholar
  61. Zhang, W. J., & Barrion, A. T. (2006). Function approximation and documentation of sampling data using artificial neural networks. Environmental Monitoring and Assessment, 122, 185–201. doi:10.1007/s10661-005-9173-6.CrossRefGoogle Scholar
  62. Zhang, W. J., Liu, G. H., & Dai, H. Q. (2008a). Simulation of food intake dynamics of holometabolous insect using functional link artificial neural network. Stochastic Environmental Research and Risk Assessment, 22, 123–133. doi:10.1007/s00477-006-0102-1.CrossRefGoogle Scholar
  63. Zhang, W. J., & Zhang, X. Y. (2008). Neural network modeling of survival dynamics of holometabolous insects: A case study. Ecological Modelling, 211, 433–443. doi:10.1016/j.ecolmodel.2007.09.026.CrossRefGoogle Scholar
  64. Zhang, W. J., Zhong, X. Q., & Liu, G. H. (2008b). Recognizing spatial distribution patterns of grassland insects: Neural network approaches. Stochastic Environmental Research and Risk Assessment, 22(2), 207–216. doi:10.1007/s00477-007-0108-3.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.School of Life SciencesSun Yat-sen (Zhongshan) UniversityGuangzhouChina

Personalised recommendations