Environmental Monitoring and Assessment

, Volume 158, Issue 1–4, pp 197–212 | Cite as

Biochemical responses in tree foliage exposed to coal-fired power plant emission in seasonally dry tropical environment

Article

Abstract

A biomonitoring study was conducted to investigate the responses of plants exposed to power plant emission in a dry tropical environment. For this purpose, five sampling sites were selected in the prevailing wind direction (NE) at different distance to thermal power plant (TPP) within 8.0 km range and a reference site was selected in eastern direction at a distance of 22.0 km. The two most common tree species, Ficus benghalensis L. (Evergreen tree) and Dalbergia sisso Roxb. (deciduous tree) were selected as test plants. Ambient sulphur dioxide (SO2), nitrogen dioxide (NO2), suspended particulate matter (SPM), respirable suspended particulate matter (RSPM), dust-fall rate (DFR) and plant responses such as leaf pigments (chlorophyll a, chlorophyll b and carotenoids), ascorbic acid, sugar and sulphate–sulphur (\(\textnormal{SO}_{4}^{2-}-\textnormal{S}\)) contents were measured. Ambient SO2, NO2, SPM, RSPM and DFR showed significant spatial and temporal variation at different sites. Considerable reduction in pigment (chlorophyll a, chlorophyll b and carotenoids) and sugar contents were observed at sites receiving higher pollution load. Ascorbic acid exhibited significant positive correlation with pollution load. Accumulation of \(\textnormal{SO}_{4}^{2-}-\textnormal{S}\) in leaf tissue showed significant positive correlation with ambient SO2 concentration at all the sites. At the same time, \(\textnormal{SO}_{4}^{2-}-\textnormal{S}\) showed significant negative correlation with pigment and sugar content. D. sisso Roxb. tree was found to be more sensitive as compared to F. benghalensis L. tree.

Keywords

Coal-fired thermal power plant Biochemical parameters Tree leaves Air pollution Sulphate–sulphur 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, M., & Agrawal, S. B. (1989). Phytomonitoring of air pollution around a thermal power plant. Atmospheric Environment, 30, 763–769. doi:10.1016/0004-6981(89)90479-4.Google Scholar
  2. Agrawal, M., & Singh, J. (2000). Impact of coal power plant emission on the foliar elemental concentrations in plants in a low rainfall tropical region. Environmental Monitoring and Assessment, 60, 261–282. doi:10.1023/A:1006135317896.CrossRefGoogle Scholar
  3. Asada, K., & Kiso, K. (1973). Initiation of aerobic oxidation of sulfite by illuminated spinach chloroplasts. European Journal of Biochemistry, 33, 253–257. doi:10.1111/j.1432-1033.1973.tb02677.x.CrossRefGoogle Scholar
  4. Backett, K. P., Free-smith, P. H., & Taylor, G. (1998). Urban woodlands: Their role in reducing the effect of particulate pollution. Environmental Pollution, 99, 347–306. doi:10.1016/S0269-7491(98)00016-5.Google Scholar
  5. Banerjee, S., Singh, A. K., & Banerjee, S. K. (2003). Impact of flyash on foliar chemical and biochemical composition of naturally occurring ground flora and its possible utilization for growing tree crop. Indian Forester, 129, 964–977.Google Scholar
  6. Bansal, S. (1988). Studies on the effect of certain atmospheric pollutants on fruit diseases of Lycopersicon esculentum Mill. Caused by Alternaria alternata, PhD thesis. Bhopal, India: Bhopal University.Google Scholar
  7. Bermadinger, E., Guttenberger, H., & Grill, D. (1990). Physiology of young Norway spruce. Environmental Pollution, 68, 319–330. doi:10.1016/0269-7491(90)90034-A.CrossRefGoogle Scholar
  8. Calvin, M. (1955). Function of carotenoids in photosynthesis. Nature, 176, 1211. doi:10.1038/1761215a0.CrossRefGoogle Scholar
  9. Cicek, A., & Koparal, A. S. (2004). Accumulation of sulfur and heavy metals in soil and tree leaves sampled from the surroundings of Tunçbilek Thermal Power Plant. Chemosphere, 57, 1031–1036. doi:10.1016/j.chemosphere.2004.07.038.CrossRefGoogle Scholar
  10. Cox, R. M. (2003). The use of passive sampling to monitor forest exposure to O3, NO2 and SO2: A review and some case studies. Environmental Pollution, 126, 301–311. doi:10.1016/S0269-7491(03)00243-4.CrossRefGoogle Scholar
  11. Dmuchowski, W., & Bytnerowricz, A. (1995). Monitoring environmental pollution in Poland by chemical analysis of Scots pine (Pinus sylvestris L.) needles. Environmental Pollution, 87, 87–104. doi:10.1016/S0269-7491(99)80012-8.CrossRefGoogle Scholar
  12. Down to Earth (2007). Fact sheet: Coal-based power plants pollute most. http://www.downtoearth.org.in/full6.asp?foldername=20070415&filename=news&sec_id=34&sid=42.
  13. Dubios, M., Gilles, K. A., Hamilton, J. K., Roberts, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350–356. doi:10.1021/ac60111a017.CrossRefGoogle Scholar
  14. Duxbury, A. C., & Yentsch, C. S. (1956). Plankton pigment monographs. Journal of Marine Research, 15, 91–101.Google Scholar
  15. Esmat, A. S. (1993). Damage to plants due to industrial pollution and their use as bioindicators in Egypt. Environmental Pollution, 81, 251–255. doi:10.1016/0269-7491(93)90207-5.CrossRefGoogle Scholar
  16. Farooq, M., Arya, K. R., Kumar, S., Gopal, K., Joshi, P. C., & Hans, R. K. (2000). Industrial pollutants mediated damage to mango (Mangifera indica) crop—a case study. Journal of Environmental Biology, 21, 165–167.Google Scholar
  17. Garg, S. S., Kumar, N., & Das, G. (2000). Effects of the Bansal Ramraj mill dust on vegetation and health at Jaitwara, District Satna (M.P). Indian Journal of Environmental Protection, 20, 326–328.Google Scholar
  18. Garty, J., Tamir, O., Hassid, I., Eshel, A., Cohen, Y., Karnieli, A., et al. (2001). Photosynthesis, chlorophyll integrity, and spectral reflectance in lichens exposed to air pollution. Journal of Environmental Quality, 30, 884–893.CrossRefGoogle Scholar
  19. Gavali, J. G., Saha, D., & Krishnayya, K. (2002). Difference in sulphur accumulation in eleven tropical tree species growing in polluted environs. Indian Journal of Environmental Health, 44, 88–91.Google Scholar
  20. Gupta, M. C., & Ghouse, A. K. M. (1987). The effect of coal-smoke pollutants on growth yield and leaf epidermis features of Abelmoschus esculentus Moench. Environmental Pollution, 43, 263–270. doi:10.1016/0269-7491(87)90179-5.CrossRefGoogle Scholar
  21. Halliwell, B., & Gutteridge, J. M. C. (1989). Free radicals in medicine and biology 2nd ed. (pp. 277–289). Oxford: Clarendon.Google Scholar
  22. Härtling, S., & Schulz, H. (1995). Ascorbat-und Glutathiongehalt in verschiedenartig schadstoffbeeinflußten Nadeln von Pinus sylvestris L. Forstwissenschaftliches Centralblatt, 114, 40–49. doi:10.1007/BF02742210.CrossRefGoogle Scholar
  23. Hausladen, A., Madamanchi, N. R., Fellows, S., Alscher, R. G., & Amundson, R. G. (1990). Seasonal changes in antioxidants in red spruce as affected by ozone. The New Phytologist, 115, 447–458. doi:10.1111/j.1469-8137.1990.tb00470.x.CrossRefGoogle Scholar
  24. Hippeli, S., & Elstner, E. F. (1996). Mechanisms of oxygen activation during plant stress: Biochemical effects of air pollutants. Journal of Plant Physiology, 148, 249–257.Google Scholar
  25. Huve, K., Dittrich, A., Kindermann, G., & Herber, U. (1995). Detoxification of SO2 in conifers differing in SO2 tolerance: A comparison of Picea abies, Picea pungens and Pinus sylvestris. Planta, 195, 578–585. doi:10.1007/BF00195718.CrossRefGoogle Scholar
  26. Iqbal, M., Abdin, M. Z., Mahmooduzzafar, Yunus, M., & Agrawal, M. (1996). Resistance mechanisms in plants against air pollution. In M. Yunus & M. Iqbal (Eds.), Plant response to air pollution (pp. 195–240). Chichester: Wiley.Google Scholar
  27. Iqbal, M., Srivastava, P. S., & Siddiqi, T. O. (2000b). Anthropogenic stresses in the environment and their consequences. In M. Igbal, et al. (Eds.), Environmental hazards, plants and people (pp. 1–40). New Delhi: CBS Publishers.Google Scholar
  28. Keller, T., & Schwager, H. (1977). Air pollution and ascorbic acid. European Journal of Forest Pathology, 7, 338–350. doi:10.1111/j.1439-0329.1977.tb00603.x.CrossRefGoogle Scholar
  29. Kondo, N., Akiyama, Y., Fujiwara, M., & Sugahara, K. (1980). Sulfite oxidizing activities in plants. In Studies on the effects of air pollutants in plants and mechanism of phytotoxicity. Research Report of Natural Environment Study Japan, 11, 137–150.Google Scholar
  30. Krinsky, N. I. (1966). The role of carotenoid pigments as protective agents against photosensitized oxidation in chloroplast. In T. W. Goodwin (Ed.), Biochemistry of chloroplasts (Vol. 1). New York: Academic.Google Scholar
  31. Legge, A. H., Bogner, J. C., & Krupa, S. V. (1988). Foliar sulphur species in pine: A new indicator of a forest ecosystem under air pollution stress. Environmental Pollution, 55, 15–27. doi:10.1016/0269-7491(88)90156-X.CrossRefGoogle Scholar
  32. Lewin, S. (1976). Vitamin C: Its molecular biology and medical potential. San Diego: Academic.Google Scholar
  33. Lorenc-Plucinska, G. (1982). Influence of SO2 on CO2 assimilation and carbon metabolism in photosynthetic processes in Scots pine. In Arboretum Kornickie (in Polish), rocznik, XXVII (pp. 285–310).Google Scholar
  34. Maclachlan, S., & Zalik, S. (1963). Plastid structure, chlorophyll concentration and free amino acid composition of a chlorophyll content of barley. Canadian Journal of Botany, 41, 1053–1062.CrossRefGoogle Scholar
  35. Madamanchi, N. R., Hausladen, A., Alscher, R. G., Amundson, R. G., & Fellows, S. (1991). Seasonal changes in antioxidants in red spruce (Picea rubens Sarg.) from three field sites in the northeastern United States. The New Phytologist, 118, 331–338. doi:10.1111/j.1469-8137.1991.tb00985.x.CrossRefGoogle Scholar
  36. Mashitha, P. M., & Pise, V. I. (2001). Biomonitoring of air pollution by correlating the pollution tolerance index of some commonly grown trees of an urban area. Pollution Research, 20, 195–197.Google Scholar
  37. Mass, F. M., Dekok, J. J., Strik-Timmer, W., & Kuiper, P. J. C. (1987). Plant responses to H2S and SO2 fumigation. II. Differences in metabolism of H2S and SO2 spinach. Physiologia Plantarum, 70, 722–728. doi:10.1111/j.1399-3054.1987.tb04330.x.CrossRefGoogle Scholar
  38. Merrymann, E. L., Spicer, C. W., & Levy, A. (1973). Evaluation of arsenite modified Jacobs Hochheiser procedure. Environmental Science & Technology, 7, 1056–1059. doi:10.1021/es60083a003.CrossRefGoogle Scholar
  39. Misra, R., & Behera, P. K. (1994). BioindicaihoAl of air pollution threat caused by industries ill western Orissa. Pollution Research, 13, 203–206.Google Scholar
  40. Nighat, F., Mahmooduzzafar, & Iqbal, M. (1999). Foliar responses of Peristrophe bicalyculata to coal smoke pollution. Journal of Plant Biology, 42, 205–212.CrossRefGoogle Scholar
  41. Nivane, S. Y., Chaudhari, P. R., Gajghate, D. G., & Tarar, J. L. (2001). Foliar biochemical features of plants as indicators of air pollution. Bulletin of Environmental Contamination and Toxicology, 67, 133–140. doi:10.1007/s001280101.CrossRefGoogle Scholar
  42. Nouchi, I. (1993). Changes in antioxidant levels and activities of related enzymes in rice leaves exposed to ozone. Soil Science and Plant Nutrition, 39, 309–320.Google Scholar
  43. Pal, A., Kulshreshtha, K., Ahmad, K. J., & Yunus, M. (2000). Changes in leaf surface structures of two avenue tree species caused by autoexhaust pollution. Journal of Environmental Biology, 21, 15–21.Google Scholar
  44. Pandey, D. D., Sinha, C. S., & Tiwari, M. G. (1991). Impact of coal dust pollution on biomass, chlorophyll and grain characteristics of rice. Journal of Biology, 3, 51–55 (Online).Google Scholar
  45. Pandey, J. (2005). Evaluation of air pollution phytotoxicity downwind of a phosphate fertilizer factory in India. Environmental Monitoring and Association, 100, 249–266. doi:10.1007/s10661-005-6509-1.CrossRefGoogle Scholar
  46. Pandey, J., & Agrawal, M. (1994). Evaluation of air pollution phytotoxicity in a seasonally dry tropical urban environment using three woody perennials. The New Phytologist, 126, 53–61. doi:10.1111/j.1469-8137.1994.tb07529.x.CrossRefGoogle Scholar
  47. Polle, A., Eiblmeier, B., & Rennenberg, H. (1984). Sulphate and antioxidants in needles of scots pine (Pinus sylvestris L.) from three SO2 polluted field sites in Eastern Germany. New Phytologist, 127, 571–577.CrossRefGoogle Scholar
  48. Prusty, B. A. K., Mishra, P. C., & Azeezb, P. A. (2005). Dust accumulation and leaf pigment content in vegetation near the national highway at Sambalpur, Orissa, India. Ecotoxicology and Environmental Safety, 60, 228–235. doi:10.1016/j.ecoenv.2003.12.013.CrossRefGoogle Scholar
  49. Puckett, K. J., Nieboer, E., Flora, W. P., & Richardson, D. H. S. (1973). Sulphur dioxide: Its effect on photosynthetic 14C fixation in lichens and suggested mechanism of phytotoxicity. The New Phytologist, 72, 141–154. doi:10.1111/j.1469-8137.1973.tb02019.x.CrossRefGoogle Scholar
  50. Rao, D. N., & Le Blanc, F. (1966). Effect of SO2 pollution on the lichen algae with special reference to chlorophyll. The Bryologist, 69, 69–75.Google Scholar
  51. Rao, M. V. (1992). Cellular detoxifying mechanisms determine the age dependent injury in tropical trees exposed to SO2. Journal of Plant Physiology, 140, 733–740.Google Scholar
  52. Rao, D. N., Agrawal, M., & Singh, J. (1990). Study of pollution sink efficiency, growth response and productivity pattern of plants with respect to flyash and SO 2 (Vol. 141, pp. 266–285). Final technical Report submitted to Ministry of Environment and Forest, India, DOE.Google Scholar
  53. Rossum, J. R., & Villarruz, P. (1961). Suggested methods for turbidimetric determination of sulphate in water. Journal of the American Water Works Association, 53, 873.Google Scholar
  54. Sandelius, A. S., Naslund, K., Carlson, A. S., Pleijel, H., & Sellden, G. (1995). Exposure of spring wheat (Triticum aestivum) to ozone in open top chambers. Effects on acyl lipid composition and chlorophyll content of flag leaves. The New Phytologist, 131, 231–239. doi:10.1111/j.1469-8137.1995.tb05724.x.CrossRefGoogle Scholar
  55. Schiff, J. A., & Fankhauser, H. (1981). Assimilatory sulfate reduction. In H. Bothe and A. Trebst (Eds.), Biology of inorganic nitrogen and sulfur (pp. 153–168). Springer: Berlin.Google Scholar
  56. Senser, M., Kloos, M., & Lutz, C. (1990). Influence of soil substrate and ozone plus acid mist on the pigment content and composition of needles from young spruce trees. Environmental Pollution, 64, 295. doi:10.1016/0269-7491(90)90052-E.CrossRefGoogle Scholar
  57. Sharma, A. P., & Tripathi, B. D. (2008a). Magnetic mapping of fly-ash pollution and heavy metals from soil samples around a point source in a dry tropical environment. Journal of Environmental Monitoring and Assessment, 138(1–3), 31–39. doi:10.1007/s10661-007-9788-x.CrossRefGoogle Scholar
  58. Sharma, A. P., & Tripathi, B. D. (2008b). Assessment of atmospheric PAHs profile through Calotropis gigantea R.Br leaves in the vicinity of an Indian coal-fired power plant. Journal of Environmental Monitoring and Assessment. doi:10.1007/s10661-008-0224-7.
  59. Sharma, A. P., & Tripathi, B. D. (2008c). Assessment of TSP-bound polychlorinated biphenyls (PCBs) in ambient air of a seasonally dry tropical urban-industrial area. AMBIO—A Journal of Human Environment, 37(4), (in press).Google Scholar
  60. Shimazaki, K., Sakaki, T., Kondo, N., & Sugahara, K. (1980). Active oxygen participation in chlorophyll destruction and lipid peroxidation in SO2-fumigated leaves of spinach. Plant & Cell Physiology, 21(7), 1193–1204.Google Scholar
  61. Shin, F. B., & Park, W. C. (1989). Dose response relationship between rice plants and atmospheric pollution. In L. J. Brasser & W. C. Mulder (Eds.), Man and his ecosytem (Vol. 2, pp. 35–40). Amsterdam: Elsevier Sci. Publ.Google Scholar
  62. Shrivastava, N., & Joshi, S. (2002). Effect of automobile air pollution on the growth of some plants at Kota. Geobios, 29, 281–282.Google Scholar
  63. Siefermann-Harms, D. (1987). The light harvesting and protective functions of carotenoids in photosynthetic membranes. Physiologia Plantarum, 69, 561–568. doi:10.1111/j.1399-3054.1987.tb09240.x.CrossRefGoogle Scholar
  64. Singh, J. S., Singh, K. P., & Agrawal, M. (1991). Environmental degradation of the Obra-Renukoot-Singrauli areas, India and its impact on natural and derived ecosystem. The Environmentalist, 11(3), 171–180. doi:10.1007/BF01263230.CrossRefGoogle Scholar
  65. Singh, N., Singh, S. N., Srivastava, K., Yunus, M., Ahmad, K. J., Sharma, S. C., et al. (1990). Relative sensitivity and tolerance of some Gladiolus cultivars to sulphur dioxide. Annals of Botany, 65, 41–44.Google Scholar
  66. Smirnoff, N. (1996). The function and metabolism of ascorbic acid in plants. Annals of Botany, 78, 661–669. doi:10.1006/anbo.1996.0175.CrossRefGoogle Scholar
  67. Tanaka, K., Suda, Y., Kondo, N., & Sugahara, K. (1985). O3 tolerance and the ascorbate-dependent H2O2 decomposing system in chloroplasts. Plant & Cell Physiology, 26, 1425–1431.Google Scholar
  68. Varshney, C. K. (1985). Role of plants in indicating, monitoring and mitigating air pollution. In G. V. Subrahmanyam, D. N. Rao, C. K. Varshney & D. K. Biswas (Eds.), Air pollution and plants. A state of the art report, ministry of environment and forest, government of india (pp. 146–170).Google Scholar
  69. Varshney, C. K., & Varshney, S. R. K. (1984). Effect of low levels of CO2 on glutamate dehydogenase in crop plants. Biochem. Physiol, 179, 433–437.Google Scholar
  70. West, P. W., & Gaeke, G. C. (1956). Fixation of sulfur dioxide as sulfitomercurate (II) and subsequent colorimetric estimation. Analytical Chemistry, 28, 1816–1819. doi:10.1021/ac60120a005.CrossRefGoogle Scholar
  71. Williams, A. J., & Banerjee, S. K. (1995). Effect of thermal power plant emission on the metabolic activities of Mangifera indica and Shorea robust. Environment and Ecology, 13, 914–919.Google Scholar
  72. Young, A. J., Britton, G., & Senser, M. (1988). Carotenoid composition of needles of Picea abies L. showing signs of photodamage. Zeitschrift f"ur Naturforschung, 45, 1111.Google Scholar
  73. Yu, S. W. (1988). Plant resistance to sulfur dioxide injury. In Perspectives in environmental botany (Vol. 2, pp. 251–282). New Delhi: Today and Tomorrow’s Printers and Publishers.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Pollution Ecology Research Laboratory, Centre of Advanced Study in BotanyBanaras Hindu UniversityVaranasiIndia
  2. 2.Centre of Environmental Science and Technology, Faculty of ScienceBanaras Hindu UniversityVaranasiIndia

Personalised recommendations