Advertisement

Environmental Monitoring and Assessment

, Volume 157, Issue 1–4, pp 575–582 | Cite as

Spectrophotometric method for the determination of chromium (VI) in water samples

  • P. NagarajEmail author
  • N. Aradhana
  • Anantharaman Shivakumar
  • Ashwinee Kumar Shrestha
  • Avinash k Gowda
Article

Abstract

A simple and sensitive spectrophotometric method for the determination of chromium has been developed. The method is based on the diazotization of Dapsone in hydroxylamine hydrochloride medium and coupling with N-(1-Napthyl) Ethylene Diamine Dihydrochloride by electrophilic substitution to produce an intense pink azo-dye, which has absorption maximum at 540 nm. The Beer’s law is obeyed from 0.02-1.0 μg mL−1 and the molar absorptivity is 3.4854 L mol−1 cm−1. The Limits of quantification and Limit of detection of the proposed method are 0.0012 μg mL−1 and 0.0039 μg mL−1 respectively. The method has been successfully applied for the determination of chromium in water samples and the results were statistically evaluated with that of the reference method.

Keywords

Chromium (VI) determination Dapsone N-(1-Napthyl) Ethylenediamine dihydrochloride Spectrophotometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agency for Toxic Substances and Disease Registry (ATSDR). (1998). Toxicological profile for chromium. Atlanta: US Public Health Service, US Department of Health and Human Services.Google Scholar
  2. Al-Shawi, A. W., & Dahl, R. (1999). Determination of total chromium in phosphate rocks by ion chromatography. Journal of Chromatography A, 850, 137–141. doi:10.1016/S0021-9673(99)00543-9.CrossRefGoogle Scholar
  3. Barceloux, D. G. (1999). Chromium. Journal of Toxicology. Clinical Toxicology, 37, 173–194. doi:10.1081/CLT-100102418.CrossRefGoogle Scholar
  4. Balasubramanian, S., & Pugalenthi, V. (1999). Determination of total chromium in tannery waste water by inductively coupled plasma-atomic emission spectrometry, flame atomic absorption spectrometry and UV–visible spectrophotometric methods. Talanta, 50(3), 457–467. doi:10.1016/S0039-9140(99)00135-6.CrossRefGoogle Scholar
  5. Eckert, J. M., Judd, R. J., Lay, P. A., & Symons, A. D. (1991). Response of chromium (V) to the diphenylcarbazide spectrophotometric method for the determination of chromium (VI). Analytica Chimica Acta, 255, 31–33. doi:10.1016/0003-2670(91)85083-5.CrossRefGoogle Scholar
  6. Gómez, V., & Callao, M. P. (2006). Chromium determination and speciation since 2000 TrAC. Trends in Analytical Chemistry, 25, 1006–1015. doi:10.1016/j.trac.2006.06.010.CrossRefGoogle Scholar
  7. Jacobsen, E., & Lund, W. (1966). Spectrophotormetric determination of chromium with thioglycollic acid. Analytica Chimica Acta, 36, 135–137. doi:10.1016/0003-2670(66)80016-8.CrossRefGoogle Scholar
  8. Joseph, W. H. L., James, W. M., & Bradley, A. J. M. (1995). Determination of chromium in biological tissues by inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 10, 551–554. doi:10.1039/ja9951000551.CrossRefGoogle Scholar
  9. Kamburova, M. (1993). Spectrophotometric determination of chromium (VI) with Methylene Blue. Talanta, 40, 713–717. doi:10.1016/0039-9140(93)80284-X.CrossRefGoogle Scholar
  10. Katsumata, H., Teshima, N., Kurihara, M., & Kawashima, T. (1999). Potentiometric flow titration of iron(II) and chromium(VI) based on flow rate ratio of a titrant to a sample. Talanta, 48, 135–141. doi:10.1016/S0039-9140(98)00231-8.CrossRefGoogle Scholar
  11. Manzoori, J. L., & Saleemi, A. (1994). Determination of chromium in serum and lake water by electrothermal atomic absorption spectrometry using vanadium and molybdenum modifier. Journal of Analytical Atomic Spectrometry, 9, 337–339. doi:10.1039/ja9940900337.CrossRefGoogle Scholar
  12. Michalski, R. (2004). Ion chromatography method for the determination of trace levels of chromium (VI) in Water. Polish Journal of Environmental Studies, 13, 73–77.Google Scholar
  13. Nikolaos, S. T., Efrosini, A. P., Christoforos, K. P., & Constantinos, E. E. (1996). Determination of chromium by electrothermal atomic absorption spectrometry with various chemical modifiers. Journal of Analytical Atomic Spectrometry, 11, 31–36. doi:10.1039/ja9961100031.CrossRefGoogle Scholar
  14. Orescanin, V., Luka Mikelic, L., Lulic, S., & Rubcic, M. (2004). Determination of Cr(III) and Cr(VI) in industrial and environmental liquid samples by EDXRF method. Analytica Chimica Acta, 527(2), 125–129. doi:10.1016/j.aca.2004.09.027.CrossRefGoogle Scholar
  15. Pal, B. K., Chakrabarti, A. K., & Ahmed, M. J. U. (1989). 2-(α-Pyridyl)-thioquinaldinamide (PTQA)-A novel fluorimetric reagent in inorganic trace analysis. I: The nonextractive, nonquenching fluorescent method for the determination of chromium(VI). Mikrochimica Acta, 97, 393–401. doi:10.1007/BF01242262.CrossRefGoogle Scholar
  16. Raj, J. B., & Gowda, H. S. (1995). Thioridazine hydrochloride as a new reagent for the spectrophotometric determination of chromium (Cambridge, U.K). Analyst (London), 120, 1815–1817. doi:10.1039/an9952001815.CrossRefGoogle Scholar
  17. Revanasiddappa, H. D., & Kiran Kumar, T. N. (2001). Spectrophotometric determination of trace amounts of chromium with citrazinic acid. Journal of Analytical Chemistry, 56, 1084–1088. doi:10.1023/A:1012928731437.CrossRefGoogle Scholar
  18. Revanasiddappa, H. D., & Kiran Kumar, T. N. (2002). Rapid spectrophotometric determination of chromium with trifluoperzanine hydrochloride. Chemia Analityczna (Warsaw), 47, 311–318.Google Scholar
  19. Revanasiddappa, H. D., & Kiran Kumar, T. N. (2003). A highly sensitive spectrophotometric determination of chromium using leuco Xylene cyanol FF. Talanta, 60, 1–8. doi:10.1016/S0039-9140(02)00567-2.CrossRefGoogle Scholar
  20. Saltzman, B. E. (1952). Microdetermination of chromium with diphenylcarbazide by permanganate oxidation. Analytica Chimica Acta, 24, 1016.Google Scholar
  21. Somer, G., & Ünal, U. (2004). A new and direct method for the trace element determination in cauliflower by differential pulse polarography. Talanta, 62, 323–328. doi:10.1016/j.talanta.2003.07.018.CrossRefGoogle Scholar
  22. Suvardhan, K., Ramanaiah, S., Suresh, K., Rekha, D., Bhagan, U., Naidu, G. R. K., et al. (2005). Spectrophotometric determination of chromium in water and pharmaceutical samples using 1-naphthol. E-Journal of Chemistry, 2, 6–14.Google Scholar
  23. Urone, P. E. (1955). Stability of Colorimetric Reagent for Chromium, s-Diphenylcarbazide, in Various Solvents. Analytical Chemistry, 27, 1354–1355. doi:10.1021/ac60104a048.CrossRefGoogle Scholar
  24. US Environmental Protection Agency. (1998). Toxicological review of trivalent chromium. Washington, DC: National Center for Environmental Assessment, Office of Research and Development.Google Scholar
  25. Versiek, J., & Cornelis, R. (1980). Normal levels of trace elements in human blood plasma or serum. Analytica Chimica Acta, 116, 217–254. doi:10.1016/S0003-2670(01)95205-5.CrossRefGoogle Scholar
  26. Yarong, L., Pradhan, N. K., Foley, R., & Low Gary, K. C. (2002). Selective determination of airborne hexavalent chromium using inductively coupled plasma mass spectrometry. Talanta, 57, 1143–1153. doi:10.1016/S0039-9140(02)00196-0.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • P. Nagaraj
    • 1
    Email author
  • N. Aradhana
    • 1
  • Anantharaman Shivakumar
    • 1
  • Ashwinee Kumar Shrestha
    • 1
  • Avinash k Gowda
    • 1
  1. 1.Department of Studies in ChemistryUniversity of MysoreManasagangotri, MysoreIndia

Personalised recommendations