Accumulation of trace metals in the muscle and liver tissues of five fish species from the Persian Gulf

  • Homira Agah
  • Martine Leermakers
  • Marc Elskens
  • S. Mohamad Rez Fatemi
  • Willy Baeyens
Article

Abstract

In this study, concentrations of 16 elements were quantified in muscles and livers of 141 fishes belonging to five commercially species. It was also our intention to evaluate potential risks to human health associated with seafood consumption. The grunt, flathead, greasy grouper, tiger-tooth croaker and silver pomfret fish species were obtained from Abadan, Deylam, Bushehr-Nirogah, Dayyer port, Lengeh port and Abbas port in Hormozgan, Bushehr and Khozesran provinces at the Iranian waters of the Persian Gulf. The contents of Al, As, Be, Cd, Cr, Co, Cu, Fe, Pb, Mn, Mo, Ni, Sb, Tl, V and Zn in fish muscles and livers were determined by Inductively Coupled Plasma Mass Spectrometry (ICP MS), after digestion in a CEM (Mars 5) microwave oven using nitric acid and hydrogen peroxide. Our results indicated that almost all metals were more accumulated in younger flathead, greasy grouper and tiger-tooth fishes. Contrary to the other fish species, grunt seems to stronger accumulating elements in the older fishes. Strong and positive correlations were observed in three or more of the fish species between V, Al, Fe, Tl, Co and Pb. The results confirmed that fish muscle and liver tissues appeared to be good bio-indicators for identification of coastal areas exposed to metallic contaminants. The results also showed that the element levels in the muscles of all fishes in our study were lower than the maximum allowable concentrations and pose no threat to public health, except for arsenic.

Keywords

Heavy metals Fish Muscle and liver The Persian Gulf ICP MS 

References

  1. Al-Arfaj, A. A., & Alam, I. A. (1993). Chemical characterization of sediments from the Gulf area after the 1991 oil spill. Marine Pollution Bulletin, 27, 97–101. doi:10.1016/0025-326X(93)90013-A.CrossRefGoogle Scholar
  2. Andrade, L., Marcet, P., Fernández-Feal, L., Fernández-Feal, C., Covelo, E. F., & Vega, F. A. (2004). Impact of the Prestige oil spill on marsh soils: relationship between heavy metal, sulfide and total petroleum hydrocarbon contents at the Villarrube and Lires marshes (Galicia, Spain). Ciencias Marinas, 30, 477–487.Google Scholar
  3. Asadi, H., & Dehghani, P. R. (1996). Satin of the Persian Gulf and Oman Sea (1st edn., p. 246). Iran Fishery Organization.Google Scholar
  4. Ashraf, W. (2006). Levels of selected heavy metals in Tuna fish. The Arabian Journal for Science and Engineering, 31, 89–92.Google Scholar
  5. Baeyens, W., Leermakers, M., De Gieter, M., Nguyen, H. L., Parmentier, K., Panutrakul, S., et al. (2005). Overview of trace metal contamination in the Scheldt estuary and effect of regulatory measures. Hydrobiologia, 540, 141–154. doi:10.1007/s10750-004-7129-4.CrossRefGoogle Scholar
  6. Blasco, J., Rubio, J. A., Forja, J., Gomez-Parra, A., & Establier, R. (1998). Heavy metals in some fishes of the mugilidae family from salt-pounds of Cadiz Bay SW Spain. Ecotoxicology and Environmental Restoration, 1, 71–77.Google Scholar
  7. Coetzee, L., Du Preez, H. H., & Van Vuren, J. H. J. (2002). Metal Concentration in Clarias gariepinus and Labeo umbratus from the Olifants and Klein Olifant River, Mpumalanga, South Africa: Zinc, copper manganese, lead, chromium, nickel, aluminium and iron. Rand Afrikaans University, South Africa, 16 pp.Google Scholar
  8. Collings, S. E., Johnson, M. S., & Leah, R. T. (1996). Metal contamination of angler. Caught fish from Mersey Estuary. Marine Environmental Research, 41, 281–297. doi:10.1016/0141-1136(95)00020-8.CrossRefGoogle Scholar
  9. De Gieter, M., & Baeyens, W. (2005). Arsenic in fish: Implications for human health. Reviews in Food and Nutrition Toxicity, CRC Press, Boca Raton, 4, 57–83.Google Scholar
  10. De Gieter, M., Leermakers, M., Van Ryssen, R., Noyen, J., Goeyens, L., & Baeyens, W. (2002). Total and toxic arsenic levels in North sea fish-arch. Environ Cont Toxicol, 43, 406–417. doi:10.1007/s00244-002-1193-4.CrossRefGoogle Scholar
  11. Dural, M., Lugal Göksu, M. Z., Özak, A. A., & Derici, B. (2006). Bioaccumulation of some heavy metals in different tissues of Dicentrarchus labrax L, 1758, Sparus aurata L, 1758 and Mugil cephalus L, 1758 from the Çamlik Lagoon of the eastern coast of Mediterranean (Turkey). Environmental Monitoring and Assessment, 118, 65–74. doi:10.1007/s10661-006-0987-7.CrossRefGoogle Scholar
  12. Environment Organization of Iran (1996). Considering heavy metals, Cd, Pb, Cu, and Zn in muscle of four fish species (grunt, tiger-tooth, greasy grouper and silver pomfret) in the Persian Gulf by AAs. The Environmental Organization of Iran.Google Scholar
  13. European Community, EC (2005). Commission Regulation No 78/2005 (pp. L16/43–L16/45). Official Journal of the Europaen Union (20.1.2005).Google Scholar
  14. Henry, F., Amara, R., Courcot, L., Lacouture, D., & Bertho, M. L. (2004). Heavy metals in four fish species from the French coast of the Eastern English Channel and Southern Bight of the North Sea. Environment International, 30, 675–683. doi:10.1016/j.envint.2003.12.007.CrossRefGoogle Scholar
  15. Joyeux, J.-C., Edmar, A., Campanha, F., & Coutinho de Jesus, H. (2004). Trace Metals Concentration in Estuarine Fishes from Vitoria Bay, Es, Brazil. Brazilian Archives of Biology and Technology, 47, 765–774. doi:10.1590/S1516-89132004000500012.CrossRefGoogle Scholar
  16. Kalay, M., Ay, O., & Canli, M. (1999). Heavy metal concentrations in fish tissues from the Northeast Mediterranean Sea. Bulletin of Environmental Contamination and Toxicology, 63, 673–681. doi:10.1007/s001289901033.CrossRefGoogle Scholar
  17. Kardovani, P. (1995). Iranian marine ecosystem (the Persian Gulf and the Caspian Sea) (Vols. 1 & 2). Tehran, Iran: Ghomes.Google Scholar
  18. Khansari, E., Ghazi-Kansari, M., & Abdollahi, M. (2005). Heavy metal content of canned tuna fish. Food Chemistry, 93, 293–296. doi:10.1016/j.foodchem.2004.09.025.CrossRefGoogle Scholar
  19. Kotze, P., du Preez, H. H., & van Vuren, J. H. J. (1999). Bioaccumulation of copper and zinc in Oreochromis mossambicus and Clarias gariepinus, from the Olifants River, Mpumalanga, South Africa. Water S.A, 25(1). http://www.wrc.org.za.
  20. Lawrence, J. F., Michalik, P., Tam, G., & Conacher, H. B. S. (1986). Identification of Arsenobetaine and arsenocholine in Canadian fish and shellfish by high-performance liquid chromatography with atomic absorption detection and confirmation by fast atom bombardment. mass spectrometry. Journal of Agricultural and Food Chemistry, 34, 315–319. doi:10.1021/jf00068a042.CrossRefGoogle Scholar
  21. Leung, K. M. Y., Morgan, I. J., Wu, R. S. S., Lau, T. C., Svavarsson, J., & Furness, R. W. (2001). Growth rate as a factor confounding the use of the dogwhelk Nucella lapillus as biomonitor of heavy metal contamination. Marine Ecology Progress Series, 221, 145–159. doi:10.3354/meps221145.CrossRefGoogle Scholar
  22. Licata, P., Tromberra, D., Cristani, M., Naccari, C., Martino, D., Calo, M., et al. (2005). Heavy metals in live rand muscle of bluefin tuna (Thunnus thynnus) caught in the straits of Messina (Sicily, Italy). Environmental Monitoring and Assessment, 107, 239–248. doi:10.1007/s10661-005-2382-1.CrossRefGoogle Scholar
  23. McFarlane, G. A., & Franxin, W. G. (1980). An examination of Cd, Cu and Hg concentrations in livers of northern pike, Esox lucius and white sucker, Catostomus commersoni, from five lakes near a base metal smelter at Flin Flon, Manitoba. Canadian Journal of Fisheries and Aquatic Sciences, 37, 1573–1578.CrossRefGoogle Scholar
  24. Metin., alta, Canpolat, zgr. (2006). The comparison of three cyprinid species in terms of heavy metals accumulation in some tissues Read Orbit web site. http://www.redorbit.com/news/entertainment/528670/the_comparison_of_three_cyprinid_species_in_terms_of_heavy/index.html.
  25. Nahida, B., Al-Majed, Preston, M. R. (2000). An assessment of the total and methyl mercury content of zooplankton and fish tissue collected from Kuwait territorial waters. Marine Pollution Bulletin, 40, 298–307. doi:10.1016/S0025-326X(99)00217-9.CrossRefGoogle Scholar
  26. Nguyen, H. L., Leermakers, M., Kurunczi, S., Bozo, L., & Baeyens, W. (2005). Mercury distribution and speciation in Lake Balaton, Hungary. The Science of the Total Environment, 340, 231–246. doi:10.1016/j.scitotenv.2004.08.016.CrossRefGoogle Scholar
  27. Otchere, F. A. (2003). Heavy metals concentrations and burden in the bivalves (Anadara (Senilia) senilis, Crassostrea tulipa and Perna perna) from lagoons in Ghana: Model to describe mechanism of accumulation/excretion. African Journal of Biotechnology, 2(9), 280–287.Google Scholar
  28. Peter, J. A. L., & Viraraghavan, T. (2005). A review of public health and environmental concerns. Environment International, 31, 493–501. doi:10.1016/j.envint.2004.09.003.CrossRefGoogle Scholar
  29. Pourang, N. (1995). Heavy metal bioaccumulation in different tissues of two fish species with regards to their feeding habits and trophic levels. Environmental Monitoring and Assessment, 35, 207–219. doi:10.1007/BF00547632.CrossRefGoogle Scholar
  30. Pourang, N., Tanabe, S., Rezvan, S., & Dennis, J. H. (2005). Trace elements accumulation in edible tissues of five sturgeon species from the Caspian Sea. Environmental Monitoring and Assessment, 100, 89–108. doi:10.1007/s10661-005-7054-7.CrossRefGoogle Scholar
  31. ROPME (1999). Regional report of the state of marine environment (ROPME Sea Area) translated by Fatemi M.R, Marine Environment Bureau of Iran (p. 165).Google Scholar
  32. U.S. Environmental Protection Agency (1999). Integrated Risk Information System. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office Cincinnati, OH: US Environmental Protection Agency.Google Scholar
  33. Vas, P., Gordon, J. D. M., Fielden, P. R., & Overnell, J. (1993). The trace metal ecology of the Icthyofauna in the Rockall Trough northeastern Atlantic. Marine Pollution Bulletin, 26, 607–612. doi:10.1016/0025-326X(93)90499-A.CrossRefGoogle Scholar
  34. Viana, F., Huertas, R., & Danulat, E. (2005). Heavy metal levels in fish from coastal waters of Uruguay. Environ Cont Toxicol, 48, 530–537. doi:10.1007/s00244-004-0100-6.CrossRefGoogle Scholar
  35. Villares, R., Real, C., Fernández, J. A., Aboal, J., & Carballeira, A. (2007). Use of an environmental specimen bank for evaluating the impact of the Prestige oil spill on the levels of trace elements in two species of Fucus on the coast of Galicia (NW Spain). The Science of the Total Environment, 374, 379–387. doi:10.1016/j.scitotenv.2006.12.032.CrossRefGoogle Scholar
  36. Watanabe, K. H., Desimone, F. W., Thiyagarajah, A., Hartley, W. R., & Hindrichs, A. E. (2003). Fish tissue quality in the lower Mississippi River and health risks from fish consumption. The Science of the Total Environment, 302, 109–126. doi:10.1016/S0048-9697(02)00396-0.CrossRefGoogle Scholar
  37. WHO (2004). Guidelines for drinking-water, 3rd Ed. (Vol. 1).Google Scholar
  38. WHO (2005). Guidelines for drinking water. World Health Organization, Geneva.Google Scholar
  39. Youn-Joo, A. (2003). Total, dissolved, and bio-available metals at Lake Texoma marinas. Environmental Pollution, 122, 253–259. doi:10.1016/S0269-7491(02)00291-9.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Homira Agah
    • 1
  • Martine Leermakers
    • 1
  • Marc Elskens
    • 1
  • S. Mohamad Rez Fatemi
    • 2
  • Willy Baeyens
    • 1
  1. 1.Department of Analytical and Environmental Chemistry (ANCH)Vrije Universiteit BrusselBrusselsBelgium
  2. 2.Department of Marine Biology, Science and Research unitIslamic Azad UniversityTehranIran

Personalised recommendations