The response of hydrophobic organics and potential toxicity in streams to urbanization of watersheds in six metropolitan areas of the United States

Article

Abstract

Semipermeable membrane devices (SPMDs) were deployed in streams along a gradient of urban land-use intensity in and around six metropolitan areas: Atlanta, Georgia; Raleigh–Durham, North Carolina; and Denver–Fort Collins, Colorado, in 2003; and Dallas–Fort Worth, Texas; Milwaukee–Green Bay, Wisconsin; and Portland, Oregon, in 2004 to examine relations between percent urban land cover in watersheds and the occurrence, concentrations, and potential toxicity of hydrophobic compounds. Of the 142 endpoints measured in SPMD dialysates, 30 were significantly (alpha = 0.05) related to the percent of urban land cover in the watersheds in at least one metropolitan area. These 30 endpoints included the aggregated measures of the total number of compounds detected and relative toxicity (Microtox® and P450RGS assays), in addition to the concentrations of 27 individual hydrophobic compounds. The number of compounds detected, P450RGS assay values, and the concentrations of pyrogenic polycyclic aromatic hydrocarbons (PAHs) were significantly related to percent urban land cover in all six metropolitan areas. Pentachloroanisole, the most frequently detected compound, was significantly related to urban land cover in all metropolitan areas except Dallas–Fort Worth. Petrogenic PAHs and dibenzofurans were positively related to percent urban land cover in Atlanta, Raleigh–Durham, Denver, and Milwaukee–Green Bay. Results for other endpoints were much more variable. The number of endpoints significantly related to urban land cover ranged from 6 in Portland to 21 Raleigh–Durham. Based on differences in the number and suite of endpoints related to urban intensity, these results provide evidence of differences in factors governing source strength, transport, and/or fate of hydrophobic compounds in the six metropolitan areas studied. The most consistent and significant results were that bioavailable, aryl hydrocarbon receptor agonists increase in streams as basins become urbanized. Potential toxicity mediated by this metabolic pathway is indicated as an important factor in the response of aquatic biota to urbanization.

Keywords

Semipermeable membrane devices Hydrophobics P450RGS Microtox® Urbanization 

References

  1. Almi, H., Ertel, T., & Schug, B. (2003). Fingerprinting of hydrocarbon fuel contaminants: Literature review. Environmental Forensics, 4, 25–38. doi:10.1080/15275920303489.CrossRefGoogle Scholar
  2. American Public Health Association (1996). P450 reporter gene response to dioxin-like organics, Method 8070. In Standard methods for the examination of water and wastewater, 19th ed Supplement (pp. 24–25). Washington, DC: American Public Health Association.Google Scholar
  3. American Society for Testing and Materials E 1853–96 (1997). Standard guide for measuring the presence of planar organic compounds which induce CYP1A, reporter gene test systems. In Biological effects and environmental fate; biotechnology; pesticides. In 1997 Annual book of ASTM standards, section 11, Water and environmental technology (Vol. 11.05, pp. 1392–1397). West Conshohocken: American Society for Testing and Materials.Google Scholar
  4. Anderson, M. J., Miller, M. R., & Hinton, D. E. (1996). In vitro modulation of 17-ß-estradiole-induced vitellogenin synthesis: Effects of cytochrome P4501A1 inducing compounds on rainbow trout (Oncorhynchus mykiss) liver cells. Aquatic Toxicology (Amsterdam, Netherlands), 34, 327–350. doi:10.1016/0166–445X(95)00047–8.Google Scholar
  5. Ang, C. Y., Inouye, L. S., McCant, D. D., & McFarland, V. A. (2000). Protocols for a rapid clean-up/extraction procedure and an improved P450RGS dioxin screening assay for sediments. DOER Technical Notes Collection (ERDC TN-DOER-C10), U.S. Army Engineer Research and Development Center, Vicksburg, MS. http://www.wes.army.mil/el/dots/doer. Accessed 1 August 2006
  6. Barron, M. G., Heintz, R., & Rice, S. D. (2004). Relative potency of PAHs and heterocycles as aryl hydrocarbon receptor agonists in fish. Marine Environmental Research, 58, 95–100. doi:10.1016/j.marenvres.2004.03.001.CrossRefGoogle Scholar
  7. Beal, R. H., Mauldin, J. K., & Jones, S. C. (1994). Subterranean termites—their prevention and control in buildings: U.S. Department of Agriculture, Home and Garden Bulletin no. 64.Google Scholar
  8. Bitsch, N., Dudas, C., Korner, W., Failing, K., Biselli, S., Rimkus, G., et al. (2002). Estrogenic activity of musk fragrances detected by the E-screen assy using human MCF-7 cells. Archives of Environmental Contamination and Toxicology, 43, 257–264. doi:10.1007/s00244–002–1192–5.CrossRefGoogle Scholar
  9. Brown, L. R., Gray, R. H., Hughes, R. H., & Meador, M. R. (eds.) (2005). Effects of urbanization on stream ecosystems. American Fisheries Society, Symposium 47, Bethesda, MD.Google Scholar
  10. Bryant, W. L., Goodbred, S. L., Leiker, T. L., Inouye, L., & Johnson, B. T. (2007). Use of chemical analysis and assays of semipermeable membrane devices extracts to assess the response of bioavailable organic pollutants in streams to urbanization in six metropolitan areas of the United States. U.S. Geological Survey Scientific Investigations Report SIR 2007–5113. http://pubs.usgs.gov/sir/2007/5113/pdf/SIR2007–5113.pdf. Accessed 1 September 2006, 58 p.
  11. Buerge, I. J., Buser, H. R., Muller, M. D., & Poiger, T. (2003). Behavior of polycyclic musks HHCB and AHTN in lakes, two potential anthropogenic markers for domestic wastewater in surface waters. Environmental Science & Technology, 24, 5636–5644. doi:10.1021/es0300721.CrossRefGoogle Scholar
  12. Bulich, A. A. (1979). Use of luminescent bacteria for determining toxicity in aquatic environments. American Society for Testing and Materials STP, 667, 98–106.Google Scholar
  13. Bulich, A. A., Huynh, H., & Ulitzur, S. (1996). The use of luminescent bacteria for measuring chronic toxicity. In G. K. Ostrander (Ed.), Techniques in aquatic toxicology (pp. 3–12). Boca Raton: Lewis, CRC.Google Scholar
  14. Burkhardt, M. R., Zaugg, S. D., Smith, S. G., & ReVello, R. C. (2006). Determination of wastewater compounds in sediment and soil by pressurized solvent extraction, solid-phase extraction, and capillary-column gas chromatography/mass spectrometry. U.S. Geological Survey Techniques and Methods, (Book 5, Chap. B2, 40 p).Google Scholar
  15. Collier, T. K., Johnson, L. L., Stehr, C. M, Myers, M. S., & Stein, J. E. (1998). A comprehensive assessment of the impacts of contaminants on fish from an urban waterway. Marine Environmental Research, 46, 243–247.Google Scholar
  16. Crunkilton, R. L., & DeVita, W. M. (1997). Determination of aqueous concentrations of polycyclic aromatic hydrocarbons (PAHs) in an urban stream. Chemosphere, 35, 1447–1463. doi:10.1016/S0045–6535(97)00217–8.CrossRefGoogle Scholar
  17. Drastichova, A. S. (2004). Biochemical markers of aquatic environmental contamination: Cytochrome-P450 in fish—a review. Acta Veterinaria, 73, 123–132.Google Scholar
  18. Eisler, R. (1987). Polycyclic aromatic hydrocarbon hazards to fish, wildlife, and invertebrates: A synoptic review: Laurel, MD, U.S. Fish and Wildlife Service, Biological Report 85(1.11), 81 p.Google Scholar
  19. Falcone, J. A., Stewart, J. S., Sobieszczyk, S., Dupree, J. A., McMahon, G., & Buell, G. R. (2007). A comparison of natural and urban characteristics and the development of urban intensity indices across six geographic settings: U.S. Geological Survey Scientific Investigations Report 2007–5123, 133 p.Google Scholar
  20. Gilliom, R. J., Barbash, J. E., Crawford, C. G., Hamilton, P. A., Martin, J. D., Nakagaki, N., et al. (2006). The quality of our nation’s waters: Pesticides in the nation’s streams and ground water, 1992–2001. U.S. Geological Survey Circular, 1291, 172 p.Google Scholar
  21. Gourlay, C., Meige, C., Noir, A., Ravelet, C., Garric, J., & Mouchel, J. (2005). How accurately do semi-permeable membrane devices measure the bioavailability of polycyclic aromatic hydrocarbons to Daphnia magna? Chemosphere, 61, 1734–1739. doi:10.1016/j.chemosphere.2005.04.039.CrossRefGoogle Scholar
  22. Helsel, D. R. (2005). Nondetects and data analysis. New York: Wiley Interscience.Google Scholar
  23. Hoh, E., & Hites, R. H. (2005). Brominated flame retardants in the atmosphere on the east-central United States. Environmental Science & Technology, 39, 7794–7802. doi:10.1021/es050718k.CrossRefGoogle Scholar
  24. Huckins, J. N., Petty, J. D., & Booij, K. (2006). Monitors of organic chemicals in the Environment: Semipermeable membrane devices. New York: Springer.Google Scholar
  25. Huckins, J. N., Petty, J. D., Lebo, J. A., Almeida, F. V., Booij, K., Alvarez, D. A., et al. (2002). Development of the permeability/performance reference compound approach for in situ calibration of semipermeable membrane devices. Environmental Science & Technology, 39, 85–91. doi:10.1021/es010991w.CrossRefGoogle Scholar
  26. Huckins, J. N., Tubergen, M. W., & Manuweera, G. K. (1990). Semipermeable membrane devices containing model lipid: A new approach to monitoring the bioavailability of lipophilic contaminants and estimating the bioconcentration potential. Chemosphere, 20, 533–552. doi:10.1016/0045–6535(90)90110-F.CrossRefGoogle Scholar
  27. Hwang, H., & Foster, G. D. (2006). Characterization of polycyclic hydrocarbons in urban stormwater runoff flowing into the tidal Anacostia River, Washington, DC, USA. Environmental Pollution, 140, 416–426. doi:10.1016/j.envpol.2005.08.003.CrossRefGoogle Scholar
  28. Inouye, L. S., & McFarland, V. A. (2000). Biomarker-based analysis for contaminants in sediments/soil: Review of cell-based assays and cDNA arrays. DOER Technical Notes Collection (ERDC TN-DOER-C19), U.S. Army Engineer Research and Development Center, Vicksburg, MS. http://www.wes.army.mil/el/dots/doer. Accessed 1 November 2006
  29. Johnson, B. T. (1998). Microtox toxicity test system—new developments and applications. In P. G Wells, K. Lee, & C. Blaise (Eds.), Microscale testing in aquatic toxicology—advances, techniques and practice (pp. 201–218). Boca Raton: CRC Lewis.Google Scholar
  30. Johnson, B. T., Petty, J. D., Huckins, J. N., Lee, K., & Gauthier, J. (2004). Hazard assessment of a simulated oil spill on intertidal areas of the St. Lawrence River with SPMD-TOX. Environmental Toxicology, 19, 329–335. doi:10.1002/tox.20022.CrossRefGoogle Scholar
  31. Kime, D. E. (1998). Endocrine disruption in fish. Boston: Kluwer Academic.Google Scholar
  32. Klein, R. D. (1979). Urbanization and stream quality impairment. Water Resources Bulletin, 5, 948–963.Google Scholar
  33. Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., et al. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: A national reconnaissance. Environmental Science & Technology, 36, 1202–1211. doi:10.1021/es011055j.CrossRefGoogle Scholar
  34. Lenat, D. R., & Crawford, J. K. (1994). Effects of land use on water quality and aquatic biota of three North Carolina Piedmont streams. Hydrobiologia, 294, 185–199. doi:10.1007/BF00021291.CrossRefGoogle Scholar
  35. Lopes, T., & Furlong, E. (2001). Occurrence and potential adverse effects of semivolatile organic compounds in streambed sediment, United States, 1992–1995. Environmental Toxicology and Chemistry, 20, 727–737. doi:10.1897/1551–5028(2001)020<0727:OAPAEO>2.0.CO;2.CrossRefGoogle Scholar
  36. Ma, M., Wang, C., & Wang, Z. (2005). Assessing toxicities of hydrophobic organic pollutants in Huaihe River by using two types of sampling. Journal of Environmental Science and Health, 40, 331–342.Google Scholar
  37. MacLatchy, D. L., & Van der Kraak, G. J. (1995). The phytoestrogen [beta]-sitosterol alters the reproductive endocrine status of goldfish. Toxicology and Applied Pharmacology, 134(2), 305–312. doi:10.1006/taap.1995.1196.CrossRefGoogle Scholar
  38. Mahler, B. J., Van Metre, P. C., Bashara, T. J., Wilson, J. T., & Johns, D. A. (2005). Parking lot sealcoat: An unrecognized source of urban PAHs. Environmental Science & Technology, 39, 5560–5566. doi:10.1021/es0501565.CrossRefGoogle Scholar
  39. Marynowski, L., Pieta, M., & Janeczek, J. (2004). Composition and source of poly-aromatic-hydrocarbon compounds in deposited dust from selected sites around the upper Silesia, Poland. Geological Quarterly, 48(2), 169–180.Google Scholar
  40. McCarthy, K. (2006). Assessment of the usefulness of semipermeable membrane devices for long-trem monitoring in an urban slough system. Environmental Monitoring and Assessment, 118, 293–318. doi:10.1007/s10661–006–1502-x.CrossRefGoogle Scholar
  41. McLachlan, J. A. (2001). Environmental signaling: What embryos and evolution teach us about endocrine disrupting chemicals. Endocrine Reviews, 22, 319–341. doi:10.1210/er.22.3.319.CrossRefGoogle Scholar
  42. Moore, A. A., & Palmer, M. A. (2005). Invertebrate biodiversity in agricultural and urban headwater streams: implications for conservation and management. Ecological Applications, 15, 1169–1177. doi:10.1890/04–1484.CrossRefGoogle Scholar
  43. Moring, J. B., & Rose, D. R. (1997). Occurrence and concentrations of polycyclic aromatic hydrocarbons in semipermeable membrane devices and clams in three urban streams of the Dallas–Fort Worth metropolitan area, Texas. Chemosphere, 34(3), 551–566. doi:10.1016/S0045–6535(96)00391–8.CrossRefGoogle Scholar
  44. Nowell, L. H., & Capel, P. D. (2003). Semivolatile organic compounds (SVOC) in bed sediment from the United States rivers and streams. U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program. http://ca.water.usgs.gov/pnsp/svoc/SVOC-SED_2001_Text.html. Accessed 1 November 2006.
  45. Nowell, L. H., Capel, P. D., & Dileanis, P. D. (1999). Pesticides in stream sediment and aquatic biota. New York: Lewis.Google Scholar
  46. Paul, M. J., & Meyer, J. L. (2001). Streams in the urban landscape. Annual Review of Ecology and Systematics, 32, 333–365. doi:10.1146/annurev.ecolsys.32.081501.114040.CrossRefGoogle Scholar
  47. Peck, A. M., & Hornbuckle, K. C. (2004). Synthetic musk fragrances in Lake Michigan. Environmental Science & Technology, 38, 367–372. doi:10.1021/es034769y.CrossRefGoogle Scholar
  48. Pitt, R. R., Field, M., Lalor, M., & Brown, M. (1995). Urban stormwater toxic pollutants—assessment, sources, and treatability. Water Environment Research, 67, 260–275. doi:10.2175/106143095X131466.CrossRefGoogle Scholar
  49. Rastall, A. C., Neziri, A., Vukovic, Z., Jung, C., Mijovic, S., Hollert, H., et al. (2004). The identification of readily bioavailable pollutants in Lake Shkodra/Skadar using semipermeable membrane devices (SPMDs), bioassays and chemical analysis. Environmental Science and Pollution Research, 11, 240–253.CrossRefGoogle Scholar
  50. Reichert, W. L., Myers, M. S., Peck-Miller, K. A., French, B. L., Anulacion, B. F., Collier, T. K., et al. (1998). Molecular epizootiology of genotoxic events in marine fish: Linking contaminant exposure, DNA damage, and tissue-level alterations. Mutation Research, 411, 215–225. doi:10.1016/S1383–5742(98)00014–3.CrossRefGoogle Scholar
  51. Rosen, M. R., Rowe, T. G., Goodbred, S. L., Shipley, D. O., & Arufe, J. A. (2006). Importance of stream flow and urbanization on toxicity in the Lake Tahoo and Truckee River watersheds. In R. M. Hughes, L. Wang, & P. M. Seelbach (Eds.), Landscape influences on stream habitats and biological assemblages. Bethsda: American Fisheries Society.Google Scholar
  52. Slack, J. R., Lorenz, D. L., et al. (2003). USGS library for S-PLUS for Windows, release 2.1. U.S. Geological Survey Open-File Report 03–357. http://water.usgs.gov/software/library.html. Accessed 1 August 2006.
  53. Strandberg, B., Dodder, N. G., Basu, I., & Hites, R. A. (2001). Concentrations and spatial variations of polybrominated diphenyl ethers and other organohalogen compounds in Great Lakes air. Environmental Science & Technology, 35, 1078–1083. doi:10.1021/es001819f.CrossRefGoogle Scholar
  54. Stein, E. D., Tiefenthaler, L. L., & Schiff, K. (2006). Watershed-based sources of polycyclic aromatic hydrocarbons in urban storm water. Environmental Toxicology and Chemistry, 24, 373–385. doi:10.1897/05–285R.1.CrossRefGoogle Scholar
  55. Sumpter, J. P., & Johnson, A. C. (2005). Lessions from endocrine disruption and their application to other issues concerning trace organics in the aquatic environment. Environmental Science & Technology, 39, 4321–4332. doi:10.1021/es048504a.CrossRefGoogle Scholar
  56. Tate, C. M., Cuffney, T. F., McMahon, G., Giddings, E. M. P., Coles, J. F., & Zappia, H. (2005). Use of an urban intensity index to assess urban effects on streams in three contrasting environmental settings. In L. R. Brown, R. M. Hughes, R. Gray, & M. R. Meador (Eds.), Effects of urbanization on stream ecosystems (pp. 291–315). Bethesda: American Fisheries Society.Google Scholar
  57. U.S. Environmental Protection Agency (2000a). Chlorpyrifos revised risk assessment and agreement with registrants. http://www.epa.gov/pesticides/op/chlorpyrifos/agreement.pdf. Accessed 1 August 2006.
  58. U.S. Environmental Protection Agency (2000b). Method 4425: Screening extracts of environmental samples for planar organic compounds (PAHS, PCBS, PCDDS/PCDFS) by a reporter gene on a human cell line. EPA Office of Solid Waste, SW 846 Methods, Update IVB: Washington, DC, U.S. Government Printing Office, 37 p.Google Scholar
  59. U.S. Geological Survey (2005). National land cover database 2001(NLCD 2001). U.S. Geological Survey. http://www.mrlc.gov/mrlc2k_nlcd.asp. Accessed December 2005.
  60. U.S. Geological Survey (2006). NAWQA Effects of urbanization on stream ecosystems (EUSE): U.S. Geological Survey. http://water.usgs.gov/nawqa/ecology/pubs/ulug_fs.pdf. Accessed 1 April 2006.
  61. Van Metre, P. C., & Mahler, B. J. (2005). Trends in hydrophobic organic contaminants in urban and reference lake sediments across the United States, 1970–2001. Environmental Science & Technology, 39, 5567–5574. doi:10.1021/es0503175.CrossRefGoogle Scholar
  62. Van Metre, P. C., Mahler, B. J., & Furlong, E. T. (2000). Urban sprawl leaves its PAH signature. Environmental Science & Technology, 34, 4064–4070. doi:10.1021/es991007n.CrossRefGoogle Scholar
  63. Villeneuve, D. L., Crunkilton, R. L., & DeVita, W. M. (1997). Aryl hydrocarbon receptor-mediated toxic potency of dissolved lipophilic contaminants collected from Lincloln Creek, Milwaukee, Wisconsin, USA, to PLHC-1 (Poeciliopsis lucida) fish heptamoa cells. Environmental Toxicology and Chemistry, 16, 977–984. doi:10.1897/1551–5028(1997)016<0977:AHRMTP>2.3.CO;2.CrossRefGoogle Scholar
  64. Vos, J. G., Becher, G., van den Berg, M., deBoer, J., & Leonards, P. E. G. (2003). Brominated flame retardants and endocrine disruption. Pure and Applied Chemistry, 75, 2039–2046.CrossRefGoogle Scholar
  65. Whiting, E. R., & Clifford, H. F. (1983). Invertebrates and urban runoff in a small northern stream, Edmonton, Alberta, Canada. Hydrobiologia, 102, 73–80. doi:10.1007/BF00006052.CrossRefGoogle Scholar
  66. Wong, C. S., Capel, P. D., & Nowell, L. H. (2000). Organochlorine pesticides and PCBs in stream sediment and aquatic biota—initial results from the National Water-Quality Assessment Program, 1992–1995. U.S. Geological Survey Water-Resources Investigations Report 00–4053. http://ca.water.usgs.gov/pnsp/rep/wrir004053/. Accessed 5 October 2006.

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.U.S. Geological SurveyNorcrossUSA
  2. 2.U.S. Geological SurveySacramentoUSA

Personalised recommendations