Advertisement

Environmental Monitoring and Assessment

, Volume 157, Issue 1–4, pp 363–373 | Cite as

Mercury speciation in the Persian Gulf sediments

  • Homira AgahEmail author
  • Marc Elskens
  • S. Mohammad Reza Fatemi
  • Fereidoon Owfi
  • Willy Baeyens
  • Martine Leermakers
Article

Abstract

The concentrations of total mercury (Hg) and methyl mercury (MMHg) were determined in 78 marine sediments in the Iranian coastal waters of the Persian Gulf along nine transects perpendicular to the coastline. Total Hg ranged from 10 to 56 ng g − 1d.w. and MMHg from 0.1 to 0.4 ng g − 1 d.w. The fraction of methyl mercury accounted from 0.3% to 1.1% of the total mercury amount. The organic carbon (OC) content ranged from 0.4% to 1.8%. The present study indicates that the levels of Hg in the sediments of the Iranian coast of the Persian Gulf were all in the concentration range of unpolluted areas regarding Hg (<100 ng g − 1). The concentrations of total Hg, methyl mercury and organic carbon were generally higher in the deeper stations. Total Hg and MMHg were significantly correlated, but no significant correlations could be found between the Hg and OC levels.

Keywords

Total mercury Methyl mercury Organic carbon Sediment The Persian Gulf Headspace GC-AFS Cold vapor AAS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiken, G., Haitzer, M., Ryan, J. N., & Nagy, K. (2003). Interactions between dissolved organic matter and mercury in the Florida Everglandes. Journal de Physique. IV, 107, 29–32. doi:10.1051/jp4:20030235.CrossRefGoogle Scholar
  2. Al-Majed, N. B., & Preston, M. (2004). The distribution and inventory of total and methyl mercury in Kuwait Bay. Marine Pollution Bulletin, 49, 930–937. doi:10.1016/j.marpolbul.2004.06.018.CrossRefGoogle Scholar
  3. Benoit, J. M., Gilmour, C. C., Mason, R. P., & Heyes, A. (1999). Sulphide controls on mercury speciation and bioavailability to methylating bacteria in sediment porewaters. Environmental Science & Technology, 33, 951–957. doi:10.1021/es9808200.CrossRefGoogle Scholar
  4. Blanco, R. M., Villanueva, M. T. J. E., Urıa, J. E. S., Sanz-Medel, A. (2000). Field sampling, preconcentration and determination of mercury species in river waters. Analytica Chimica Acta, 419, 137–144. doi:10.1016/S0003-2670(00)01002-3.CrossRefGoogle Scholar
  5. Bloom, N. S., Colman, J. A., & Barber, L. (1997). A of methyl mercury during aqueous distillation and alternative techniques for the extraction of methyl mercury from environmental samples. Fresenius’ Journal of Analytical Chemistry, 358(3), 371–377. doi:10.1007/s002160050432.CrossRefGoogle Scholar
  6. Boening, D. W. (2000). Ecological effects, transport, and fate of mercury: A general review. Chemosphere, 40, 1335–1351. doi:10.1016/S0045-6535(99)00283-0.CrossRefGoogle Scholar
  7. CCME. Canadian Council of Ministers of the Environment (1999). http://www.ec.gc.ca/ceqg-rcqe/English/ccme/default.cfm.
  8. Fitzgerald, W. F., Engstrom, D. R., Mason, R. P., & Nater, E. A. (1998). The case for atmospheric mercury contamination in remote areas. Environmental Science & Technology, 32, 1–7. doi:10.1021/es970284w.CrossRefGoogle Scholar
  9. Fitzgerald, W. F., & Mason, R. (1996). The global mercury cycle: Oceanic and anthropogenic aspects. In W. Baeyens, R. Ebinghous, O. Vasiliev (Eds.), Global and regional mercury cycles: Sources, fluxes and mass balances (pp. 85–108). Dordrecht: Kluwer.Google Scholar
  10. Hammerschmidt, C. R., & Fitzgerald, W. F. (2004). Geochemical controls on the production and distribution of methyl mercury in near-shore marine sediments. Environmental Science & Technology, 38, 1487–1495. doi:10.1021/es034528q.CrossRefGoogle Scholar
  11. Hammerschmidt, C. R., & Fitzgerald, W. F. (2006). Methyl mercury cycling in sediments on the continental shelf of southern New England. Geochimica et Cosmochimica Acta, 70, 918–930. doi:10.1016/j.gca.2005.10.020.CrossRefGoogle Scholar
  12. Harada, M. (1995). Minamata disease: Methyl mercury poisoning in Japan caused by environmental pollution. Critical Reviews in Toxicology, 25(1), 1–24. doi:10.3109/10408449509089885.CrossRefGoogle Scholar
  13. Hellings, L. (2000). Origin and fate of dissolved inorganic and particulate organic carbon in a highly polluted estuary (The Scheldt) as traced by stable isotopes. PhD Thesis. Vrije Universiteit Brussel. 210 pp.Google Scholar
  14. IAEA (1990). Survey of mercury in fish and sediment from the ROPME Sea Area. Monaco: IAEA International Laboratory of Marine Radioactivity, Final Data Report for the project Number KA/5102-82-10 (2363), Rev.7.Google Scholar
  15. Kannan, K., & Falandysz, J. (1998). Speciation of mercury in certain coastal marine sediments. Water, Air, and Soil Pollution, 103, 139–136. doi:10.1023/A:1004967112178.CrossRefGoogle Scholar
  16. Kardovani, P. (1995). Iranian marine ecosystem; the Persian Gulf and the Caspian Sea, 2nd volume. Tehran: Ghomes.Google Scholar
  17. Kelly, C. A., Rudd, J. W. M., & Holoka, M. H. (2003). Effect of pH on mercury uptake by an aquatic bacterium: Implication for Hg cycling. Environmental Science & Technology, 37(13), 2941–2946. doi:10.1021/es026366o.CrossRefGoogle Scholar
  18. Landaluze, J. S., de Diego, A., Raposo, J. R., & Madariaga, J. M. (2004). Methyl mercury determination in sediments and fish tissues from the Nerbioi-Ibaizabal estuary (Basque Country, Spain). Analytica Chimica Acta, 508, 107–117. doi:10.1016/j.aca.2003.11.070.CrossRefGoogle Scholar
  19. Leermakers, M., Baeyens, W., Quevauviller, P., & Horvat, M. (2005). Mercury in environmental samples: Speciation, artifacts and validation. Trends in Analytical Chemistry, 24, 383–393. doi:10.1016/j.trac.2004.01.001.CrossRefGoogle Scholar
  20. Leermakers, M., Gallettti, S., De Galan, S., Brion, N., & Baeyens, W. (2001). Mercury in the Southern North Sea and Scheldt estuary. Marine Chemistry, 75(3), 229–248. doi:10.1016/S0304-4203(01)00039-1.CrossRefGoogle Scholar
  21. Leermakers, M., Meuleman, C., & Baeyens, W. (1995). Mercury speciation in the Scheldt estuary. Water, Air, and Soil Pollution, 80, 641–652. doi:10.1007/BF01189717.CrossRefGoogle Scholar
  22. Leermakers, M., Meuleman, C., & Baeyens, W. (1996). Mercury distribution and fluxes in Lake Baikal. In W. Baeyens, et al. (Eds.), Global and regional mercury cycles: Sources, fluxes and mass balances (pp. 303–315). Norwell: Kluwer Academic.Google Scholar
  23. Leermakers, M., Nguyen, H. L., Vanneste, B., Kurunczi, S., Galletti, S., & Baeyens, W. (2003). Determination of methyl mercury in environmental samples using static headspace gas chromatography and atomic fluorescence detection after aqueous phase ethylation. Analytical and Bioanalytical Chemistry, 377, 327–333. doi:10.1007/s00216-003-2116-6.CrossRefGoogle Scholar
  24. MacDonald, D. D., Ingersoll, C. G., & Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39, 20–31. doi:10.1007/s002440010075.CrossRefGoogle Scholar
  25. Mikac, N., Foucher, D., Clarisse, O., Niessen, S., Lojen, S., Logar, M., et al. (2004). Relationship between mercury and solid sulfides in aquatic sediments. Proceedings in Materials and Geoenvironment, 51(Part 2), 1214–1214.Google Scholar
  26. Morel, F. M. M., Kraepiel, A. M. L., & Amyot, M. (1998). The chemical cycle and bioaccumulation of mercury. Annual Review of Ecology and Systematics, 29, 543–566. doi:10.1146/annurev.ecolsys.29.1.543.CrossRefGoogle Scholar
  27. Muhaya, B., Leermakers, M., & Baeyens, W. (1997). Total mercury and methyl mercury in sediments and in the polychaete Nereis diversicolor at Groot Buitenschoor (Scheldt Estuary, Belgium). Water, Air, and Soil Pollution, 94, 109–123.Google Scholar
  28. Muhaya, B., Leermakers, M., & Baeyens, W. (1998). Influence of sediment preservation on total mercury and methyl mercury analysis. Water, Air, and Soil Pollution, 107, 277–288. doi:10.1023/A:1019886606856.CrossRefGoogle Scholar
  29. Nguyen, H. L., Leermakers, M., Kurunczi, S., Bozo, L., & Baeyens, W. (2005). Mercury distribution and speciation in Lake Balaton, Hungary. The Science of the Total Environment, 340, 231–246. doi:j.scitotenv.2004.08.016.CrossRefGoogle Scholar
  30. Persaud, D., Jaagumagi, R., & Hayton, A. (1993). Guidelines for the protection and management of aquatic sediment quality in Ontario. Toronto: Water Resources Branch, Ontario Ministry of the Environment.Google Scholar
  31. ROPME (1999). State of the marine environment report 1999. Kuwait: The Land Base of the Persian Gulf, ROPME, Marine Department of Environmental Organization of Iran.Google Scholar
  32. ROPME (2004). The status of the marine environment report 2004. Kuwait: ROPME.Google Scholar
  33. Tseng, C. M., De Diego, A., Martin, F. M., & Donard, O. F. X. (1997). Journal of Analytical Atomic Spectrometry, 12(6), 629–635. doi:10.1039/a700832e.CrossRefGoogle Scholar
  34. Ullrich, S. M., Tanton, T. W., & Abrdashitova, S. A. (2001). Mercury in aquatic environment: A review of factors affecting methylation. Critical Reviews in Environmental Science and Technology, 31, 241–293. doi:10.1080/20016491089226.CrossRefGoogle Scholar
  35. US EPA, US Environmental Protection Agency (2006). Great lakes contaminated sediments. http://www.epa.gov/glnpo/sediment/whitelake/4.0–4.1.htm.
  36. WHO (1990). Environmental health criteria 101. Methyl mercury (p. 144). Geneva: World Health Organization.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Homira Agah
    • 1
    Email author
  • Marc Elskens
    • 1
  • S. Mohammad Reza Fatemi
    • 2
  • Fereidoon Owfi
    • 3
  • Willy Baeyens
    • 1
  • Martine Leermakers
    • 1
  1. 1.Department of Analytical and Environmental Chemistry (ANCH)Vrije Universiteit BrusselBrusselsBelgium
  2. 2.Department of Marine Biology and Science and Research UnitIslamic Azad UniversityTehranIran
  3. 3.Marine Ecology DepartmentIranian Fishery Research Organization (IFRO)TehranIran

Personalised recommendations