Environmental Monitoring and Assessment

, Volume 157, Issue 1–4, pp 319–330 | Cite as

Natural Jordanian zeolite: removal of heavy metal ions from water samples using column and batch methods

  • Hutaf M. Baker
  • Adnan M. Massadeh
  • Hammad A. Younes


The adsorption behavior of natural Jordanian zeolites with respect to Cd2 + , Cu2 + , Pb2 + , and Zn2 +  was studied in order to consider its application to purity metal finishing drinking and waste water samples under different conditions such as zeolite particle size, ionic strength and initial metal ion concentration. In the present work, a new method was developed to remove the heavy metal by using a glass column as the one that used in column chromatography and to make a comparative between the batch experiment and column experiment by using natural Jordanian zeolite as adsorbent and some heavy metals as adsorbate. The column method was used using different metal ions concentrations ranged from 5 to 20 mg/L with average particle size of zeolite ranged between 90 and 350 μm, and ionic strength ranged from 0.01 to 0.05. Atomic absorption spectrometry was used for analysis of these heavy metal ions, the results obtained in this study indicated that zeolitic tuff is an efficient ion exchanger for removing heavy metals, in particular the fine particle sizes of zeolite at pH 6, whereas, no clear effect of low ionic strength values is noticed on the removal process. Equilibrium modeling of the removal showed that the adsorption of Cd2 + , Cu2 + , Pb2 + , and Zn2 +  were fitted to Langmuir, Freundlich and Dubinin-Kaganer-Radushkevich (DKR). The sorption energy E determined in the DKR equation (9.129, 10.000, 10.541, and 11.180 kJ/mol for Zn2 + , Cu2 + , Cd2 +  and Pb2 +  respectively) which revealed the nature of the ion-exchange mechanism.


Heavy metal ions Isotherm models Atomic absorption spectrometry Jordanian zeolite Column Batch 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abd El-Rahman, K. M., El-Sourougy, M. R., Abdel-Monem, N. M., & Ismail, I. M. (2006). Modeling the sorption kinetics of cesium and strontium ions on zeolite A. Journal of Nuclear and Radiochemical Sciences, 7(2), 21–27.Google Scholar
  2. Agency for Toxic Substances and Disease Registry (ASTDR) (2005). Toxicological profile for zinc (update). Atlanta, GA: US Department of Public Health and Human Services, Public Health Service.Google Scholar
  3. AL-Degs, Y., Tutunji, M., & Baker, H. (2003). Isothermal and kinetic adsorption behavior of Pb + 2 ions on natural silicate minerals. Clay Minerals, 38, 501–509. doi:10.1180/0009855033840111.CrossRefGoogle Scholar
  4. Ali, A., & El-Bishtawi, R. (1997). Removal of lead and nickel ions using zeolite tuff. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 69, 27–34. doi:10.1002/(SICI)1097–4660(199705)69:1<27::AID-JCTB682>3.0.CO;2-J.CrossRefGoogle Scholar
  5. Baird, C. (1999). Environmental chemistry (2nd ed.). USA: Freeman.Google Scholar
  6. Baker, H., & Abdel-Halim, H. M. (2007). Removal of nickel ions from aqueous solutions by using insolubilized humic acid: Effect of pH and temperature. Asian Journal of Chemistry, 19(1), 233–245.Google Scholar
  7. Baker, H., & Khalili, F. (2003). Comparative study of binding strengths and thermodynamic aspects of Cu(II) and Ni(II) with humic acid by Schubert’s ion-exchange method. Analytica Chimica Acta, 497, 235–248.CrossRefGoogle Scholar
  8. Baker, H., & Khalili, F. (2004). Analysis of the removal of lead(II) from aqueous solutions by adsorption onto insolubilized humic acid: Temperature and pH dependence. Analytica Chimica Acta, 516, 179–186.CrossRefGoogle Scholar
  9. Baker, H., & Khalili, F. (2005). A study of complexation thermodynamic of humic acid with cadmium (II) and zinc (II) by Schubert’s ion-exchange method. Analytica Chimica Acta, 542(2), 240–248.CrossRefGoogle Scholar
  10. Baker, H., & Khalili, F. (2007). Effects of pH and temperature on the interaction of Pb (II) with Azraq humic acid by Schubert’s ion exchange method. Annals of Environmental Science, 1, 35–44.Google Scholar
  11. Baker, H. M. (2008a). A study of the binding strength and thermodynamic aspects of cadmium and lead ions with natural silicate minerals in aqueous solutions. Desalination (in press).Google Scholar
  12. Baker, H. M. (2008b). Characterization for the interaction of nickel (II) and copper (II) from aqueous solutions with natural silicate minerals. Desalination (in press).Google Scholar
  13. Bereket, G., Aroǧuz, A. Z., & Özel, M. (1997). Removal of Pb(II), Cd (II), Cu(II) and Zn(II) from aqueous solutions by adsorption on bentonite. Journal of Colloid and Interface Science, 187, 338–343. doi:10.1006/jcis.1996.4537.CrossRefGoogle Scholar
  14. Bosso, S., & Enzweiler, J. (2002). Evaluation of heavy metal removal from aqueous solution onto scolecite. Water Research, 36, 4795–4800. doi:10.1016/S0043-1354(02)00208-7.CrossRefGoogle Scholar
  15. Erdem, E., Karapinar, N., & Donat, R. (2004). The removal of heavy metal cations by natural zeolites. Journal of Colloid and Interface Science, 280, 309–314. doi:10.1016/j.jcis.2004.08.028.CrossRefGoogle Scholar
  16. Farkas, A., Roi’c, M., Barbari’c, M. (2005). Ammonium exchange in leakage waters of waste dumps using natural zeolite from the Krapina Region, Croatia. Journal of Hazardous Materials, 117, 25–33. doi:10.1016/j.jhazmat.2004.05.035.CrossRefGoogle Scholar
  17. Fzali, A., Mustafa, V., Taher, A., & Rezaeipour, E. (2005). Natural anlcime zeolite modified with 5-Br-PADAP for the pre-concentration and anodic stripping voltammetric determination of trace amount of cadmium. Analytical Sciences, 21, 383–386. doi:10.2116/analsci.21.383.CrossRefGoogle Scholar
  18. Garcia Sanchez, A., Alvarez Ayuso, E., & Jimenez De Blas, O. (1999). Sorption of heavy metals from industrial waste water by low-cost mineral silicates. Clay Minerals, 34, 469–477. doi:10.1180/000985599546370.CrossRefGoogle Scholar
  19. Hui, S., Chao, H., & Kot, C. (2005). Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash. Journal of Hazardous Materials, B127, 89–101. doi:10.1016/j.jhazmat.2005.06.027.CrossRefGoogle Scholar
  20. Karthikeyan, K. G., Mandla, A., Tshabalala, D., & Wang, G. (2002). Use of lignocellulose materials as sorption media for phosphorus removal. The Society for Engineering in Agricultural, Food, Biological Systems, Paper Number: 025001 and An ASAE Meeting Presentation, 1–15.Google Scholar
  21. Lazaridis, K., Peleka, N., Karapantsios, D., & Matis, A. (2004). Copper removal from effluents by various separation techniques. Hydrometallurgy, 74, 149–156. doi:10.1016/j.hydromet.2004.03.003.CrossRefGoogle Scholar
  22. Massadeh, A. M. (2003). Distribution of copper and zinc in different fractions of particle size in road dust samples in Irbid city, Jordan using atomic absorption spectrometry. Research Journal of Chemistry and Environment, 7(4), 49–54.Google Scholar
  23. Muhammad, M. A. (2004). Ishtiaq Hassan, Murtaza Malik3 and Asif Matin, Removal of copper from industrial effluent by adsorption with economical viable material. EJEAFChe, 3(2), 658–664.Google Scholar
  24. Navia, R., Fuentes, B., Lorber, E., Moa, L., & Diez, C. (2005). Ib-Series columns adsorption P cinerea performance of kraft mill wastewater pollutants onto volcanic soil. Chemosphere, 60, 870–878. doi:10.1016/j.chemosphere.2005.01.036.CrossRefGoogle Scholar
  25. Roodtaei, N., & Tezel, H. N. (2004). Removal of phenol from aqueous solution by adsorption. Journal of Environmental Management, 70, 157–164. doi:10.1016/j.jenvman.2003.11.004.CrossRefGoogle Scholar
  26. Rushdi, I., Yousef, M. F., Tutunji, G. A. W., Deraish, S. M. M. (1999). Chemical and structural properties of Jordanian zeolitic tuffs and their admixtures with urea and thiourea: Potential scavengers for phenolics in aqueous medium. Journal of Colloid and Interface Science, 216, 348–359. doi:10.1006/jcis.1999.6334.CrossRefGoogle Scholar
  27. Stylianou, M. A., Kollia, D., Haralambous, K.-J., Inglezakis, V. J., Moustakas, K. G., & Loizidou, M. D. (2007). Effect of acid treatment on the removal of heavy metals from sewage sludge. Desalination, 215, 73–81. doi:10.1016/j.desal.2006.11.015.CrossRefGoogle Scholar
  28. Weng, C.-H., Tsai, C.-Z., Chu, S.-H., & Sharma, Y. C. (2007). Adsorption characteristics of copper (II) onto spent activated clay. Separation and Purification Technology, 54, 187–197. doi:10.1016/j.seppur.2006.09.009.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Hutaf M. Baker
    • 1
  • Adnan M. Massadeh
    • 2
  • Hammad A. Younes
    • 1
  1. 1.Department of Chemistry, Faculty of ScienceAl al-Bayt UniversityMafraqJordan
  2. 2.Department of Medicinal Chemistry, Faculty of PharmacyJordan University of Science and TechnologyIrbidJordan

Personalised recommendations