Environmental Monitoring and Assessment

, Volume 157, Issue 1–4, pp 305–318 | Cite as

Benthic communities of streams related to different land uses in a hydrographic basin in southern Brazil



Different land uses affect the characteristics of a hydrographic basin, reflected in the river water quality, and consequently affecting the aquatic biota. The benthic community closely reflects the alterations caused by different human activities. In this study, the effects of different land uses were evaluated by analysis of the benthic community structure in streams with urban, agricultural and pasturage influences, as well as areas in better-conserved regions. The abiotic parameters showed distinct seasonal variability, which did not occur with the benthic organisms. A degradation gradient was observed among the study sites, in the headwaters–agriculture–pasture–urban direction. By the CCA its possible to observe that the density of organisms tended to increase along this gradient, whereas richness, diversity, evenness, and EPT families decreased. The most intense effects of land use on the benthic community composition, richness, and diversity were observed in urban areas (F1,4 = 16.0, p = 0.01; F1,4 = 8.97, p = 0.04; respectively). In conclusion a trend in the benthic community is observed in to predict alterations caused for the different land uses, mainly, when the source point pollution, as the case of urban area.


Bioindicators Biomonitoring Benthic macroinvertebrates Environmental quality Water quality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allan, J. D. (1995). Stream ecology. Boston: Kluwer.Google Scholar
  2. APHA (American Public Health Association) (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington: APHA (American Public Health Association).Google Scholar
  3. Bacey, J., & Spurlock, F. (2007). Biological of urban and agricultural streams in the California Central Valley. Environmental Monitoring and Assessment, 130, 483–493. doi:10.1007/s10661-006-9438-8.CrossRefGoogle Scholar
  4. Bond-Buckup, G., & Buckup, L. (1999). Família Aeglidae. In L. Buckup & G. Buckup-Bond (Eds.), Os crustáceos do Rio Grande do Sul (pp. 362–382). Porto Alegre: EdUFRGS.Google Scholar
  5. Braccia, A., & Voshell-Jr, J. R. (2006). Environmental factors accounting for benthic macroinvertebrate assemblage structure at the sample scale in streams subjected to a gradient of cattle grazing. Hydrobiologia, 573, 55–73. doi:10.1007/s10750-006-0257-2.CrossRefGoogle Scholar
  6. Brigante, J., & Espínola, E. L. G. (2003). Limnologia Fluvial: Um estudo no Rio Mogi-Guaçu. São Carlos: RiMA.Google Scholar
  7. Buckup, L., Bueno, A. A. P., Bond-Buckup, G., Casagrande, M., & Majolo, F. (2007). The benthic macroinvertebrates fauna of highland streams in southern Brazil: Composition, diversity and structure. Revista Brasileira de Zoologia, 24, 294–301. doi:10.1590/S0101-81752007000200005.CrossRefGoogle Scholar
  8. Bueno, A. A. P., Bond-Buckup, G., & Ferreira, B. D. P. (2003). Estrutura da comunidade de invertebrados bentônicos em dois cursos d’água do Rio Grande do Sul, Brasil. Revista Brasileira de Zoologia, 20, 115–125. doi:10.1590/S0101-81752003000100014.CrossRefGoogle Scholar
  9. Bunn, S. E., Davies, P. M., & Mosisch, T. D. (1999). Ecosystem measures of river health and their responses to riparian and catchment degradation. Freshwater Biology, 41, 333–345. doi:10.1046/j.1365-2427.1999.00434.x.CrossRefGoogle Scholar
  10. Buss, D. F., Baptista, D. F., Nessimian, J. L., & Egler, M. (2004). Substrate specificity, environmental degradation and disturbance structuring macroinvertebrates assemblages in neotropical streams. Hydrobiologia, 518, 179–188. doi:10.1023/B:HYDR.0000025067.66126.1c.CrossRefGoogle Scholar
  11. Buss, D. F., Baptista, D. F., Silveira, M. P., Nessimian, J. L., & Dorvillé, L. F. M. (2002). Influence of water chemistry and environmental degradation on macroinvertebrate assemblages in a river basin in south-east Brazil. Hydrobiologia, 481, 125–136. doi:10.1023/A:1021281508709.CrossRefGoogle Scholar
  12. Camargo, J. A., & Voelz, N. J. (1998). Biotic and abiotic changes along the recovery gradient of two impounded rivers with different impoundment use. Environmental Monitoring and Assessment, 50, 143–158. doi:10.1023/A:1005712024049.CrossRefGoogle Scholar
  13. Corbi, J. J., & Trivinho-Strixino, S. (2006). Influence of taxonomic resolution of stream macroinvertebrate communities on the evaluation of different land uses. Acta Limnologica Brasiliensia, 18, 469–475.Google Scholar
  14. Costa, C., Ide, S., & Simonka, C. E. (2006). Insetos Imaturos—Metamorfose e Identificação. Ribeirão Preto: Holos.Google Scholar
  15. Dauer, D. M., Ranasinghe, J. A., & Weisberg, S. B. (2000). Relationships between benthic community condition, water quality, sediment quality, nutrient loads, and land use patterns in Chesapeake Bay. Estuaries, 23, 80–96. doi:10.2307/1353227.CrossRefGoogle Scholar
  16. Dolédec, S., Oliver, J. M., & Statzner, B. (2000). Accurate description of the abundance of taxa and their biological traits in stream invertebrate communities: Effects of taxonomic and spatial resolution. Archiv fuer Hydrobiologie, 142, 415–432.Google Scholar
  17. Fernandez, H. R., & Domingues, E. (2001). Guía para la determinación de los artropodos bentónicos Sudamericanos. Tucumán: UNT.Google Scholar
  18. Gotelli, N. J., & Ellison, A. M. (2004). A primer of ecological statistics. Massachusetts: Sinauer.Google Scholar
  19. Hepp, L. U., & Restello, R. M. (2007). Macroinvertebrados bentônicos como bioindicadores da qualidade das águas do Alto Uruguai Gaúcho. In S. B. Zakrzeviski (Ed.), Conservação e uso sustentável da água: Múltiplos olhares (pp. 75–86). Erechim: Edifapes.Google Scholar
  20. Karr, L. R., & Chu, E. W. (2000). Sustaining living rivers. Hydrobiologia, 422, 1–14. doi:10.1023/A:1017097611303.CrossRefGoogle Scholar
  21. Kleine, P., & Trivinho-Strixino, S. (2005). Chironomidae and other aquatic macroinvertebrate of a first order stream: Community response after habitat fragmentation. Acta Limnologica Brasiliensia, 17, 81–90.Google Scholar
  22. Kovach Computing Services. (2000). Multivariate Statistical Package v 3.11. Retrieved from http://www.kovcomp.com.
  23. Lenat, D. R., & Crawford, J. K. (1994). Effects of land use on water quality and aquatic biota of three North Carolina Piedmont streams. Hydrobiologia, 294, 185–199. doi:10.1007/BF00021291.CrossRefGoogle Scholar
  24. Locke, B. A., Cherry, D. S., Zipper, C. E., & Currie, R. J. (2006). Land use influences and ecotoxicological ratings for upper Clinch River Tributaries in Virginia. Archives of Environmental Contamination and Toxicology, 51, 197–205. doi:10.1007/s00244-005-0027-6.CrossRefGoogle Scholar
  25. Macgregor, C. J., & Warren, C. R. (2006). Adopting sustainable farm management practices within a nitrate vulnerable zone in Scotland: The view from the farm. Agriculture Ecosystems & Environment, 113, 108–119. doi:10.1016/j.agee.2005.09.003.CrossRefGoogle Scholar
  26. Magurran, A. E. (2004). Measuring biological diversity. Oxford: Blackwell.Google Scholar
  27. Marques, M. M., Barbosa, F. A. R., & Callisto, M. (1999). Distribution and abundance of chironomidae (diptera, insecta) in an impacted watershed in south-east Brazil. Brazilian Journal of Biology, 59, 553–561.Google Scholar
  28. Megan, M. H., Nash, M. S., Neale, A. C., & Pitchford, A. M. (2007). Biological integrity in Mid-Atlantic Coastal plains headwater streams. Environmental Monitoring and Assessment, 124, 141–156. doi:10.1007/s10661-006-9214-9.CrossRefGoogle Scholar
  29. Melo, A. S. (2005). Effects of taxonomic and numeric resolution on the ability to detect ecological patterns at local scale using stream macroinvertebrate. Archiv fuer Hydrobiologie, 164, 309–323. doi:10.1127/0003-9136/2005/0164-0309.CrossRefGoogle Scholar
  30. Merritt, R. W., & Cummins, K. W. (1996). An introduction to the aquatic insects of North America. Iowa: Kendall/Hunt.Google Scholar
  31. Molozzi, J., Hepp, L. U., & Dias, A. S. (2007). Influence of rice crop on the benthic community in Itajaí valley (Santa Catarina, Brazil). Acta Limnologica Brasiliensia, 19, 383–392.Google Scholar
  32. Moreno, J. L., Navarro, C., & Las Heras, J. D. (2006). Abiotic ecotypes in south-central Spanish rivers: Reference conditions and pollution. Environmental Pollution, 143, 388–396. doi:10.1016/j.envpol.2005.12.012.CrossRefGoogle Scholar
  33. Nessimian, J. L., Venticinque, E. M., Zuanon, J. Marco-Jr, P., Gordo, M., Fidelis, L., et al. (2008). Land use, habitat integrity, and aquatic insect assembleges, in Central Amazonian streams. Hydrobiologia. doi:10.1007/s10750-008-9441-x.
  34. Niyogi, D. K., Koren, M., Arbuckle, C. J., & Townsend, C. R. (2007). Stream communities along a catchment land-use gradient: Subsidy-stress responses to pastoral development. Environmental Management, 39, 213–225. doi:10.1007/s00267-005-0310-3.CrossRefGoogle Scholar
  35. Ometto, J. P., Gessner, A., Martinelli, L. A., & Bernardes, M. C. (2004). Macroinvertebrate community as indicator of land-use changes in tropical watersheds, southern Brazil. Ecohydrology & Hydrobiology, 4, 37–49.Google Scholar
  36. Pillar, V. D., & Orlóci, L. (1996). On randomization testing in vegetation science: Multifactor comparisons of releve groups. Journal of Vegetation Science, 7, 585–595. doi:10.2307/3236308.CrossRefGoogle Scholar
  37. R Development Core Team. (2006). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0. Retrieved from http://www.R-project.org.
  38. Ramirez, A., & Pringle, C. M. (2001). Spatial and temporal patterns of invertebrates drift in streams draining a Neotropical landscape. Freshwater Biology, 46, 47–62. doi:10.1046/j.1365-2427.2001.00636.x.CrossRefGoogle Scholar
  39. Rhea, D. T., Harper, D. D., Farag, A. M., & Brumbaugh, W. G. (2006). Biomonitoring in the boulder river watershed, Montana, USA: Metal concentrations in biofilm and macroinvertebrates, and relations with macroinvertebrate assemblage. Environmental Monitoring and Assessment, 115, 381–393. doi:10.1007/s10661-006-7086-7.CrossRefGoogle Scholar
  40. Rios, S. L., & Bailey, R. C. (2006). Relationship between riparian vegetation and stream benthic communities at three special scales. Hydrobiologia, 553, 153–160. doi:10.1007/s10750-005-0868-z.CrossRefGoogle Scholar
  41. Roque, F. O., Trivinho-Strixino, S., Strixino, G., Agostinho, R. C., & Fogo, J. C. (2003). Benthic macroinvertebrates in stream of the Jaraguá State Park (Southeast of Brazil) considering multiple spatial scales. Journal of Insect Conservation, 7, 63–72. doi:10.1023/A:1025505323668.CrossRefGoogle Scholar
  42. Rosemberg, D. M., & Resh, C. M. (1993). Freshwater biomonitoring and benthic macroinvertebrates. New York: Chapman & Hall.Google Scholar
  43. Roy, A. H., Rosemond, M. J., Paul, M. J., & Wallace, J. B. (2003). Stream macroinvertebrate response to catchment urbanization (Georgia, USA). Freshwater Biology, 48, 329–346. doi:10.1046/j.1365-2427.2003.00979.x.CrossRefGoogle Scholar
  44. Salomoni, S. E., Rocha, O., & Leite, E. H. (2007). Limnological characterization of Gravataí River, Rio Grande do Sul. Acta Limnologica Brasileinsia, 19, 1–14.Google Scholar
  45. Scariot, E. C., & Zanin, E. M. (2005). Diagnóstico Ambiental do município de Jacutinga—RS. Perspectiva, 105, 33–42.Google Scholar
  46. Silveira, M. P., Buss, D. F., Nessimian, J. L., & Baptista, D. F. (2006). Spatial and temporal distribution of benthic macroinvertebrates in a southeastern Brazilian river. Brazilian Journal of Biology, 66, 623–632. doi:10.1590/S1519-69842006000400006.CrossRefGoogle Scholar
  47. Smith, R. F., & Lamp, W. O. (2008). Comparison of insect communities between adjacent headwater and main-stem stream in urban and rural watersheds. Journal of the North American Benthological Society, 27, 161–175. doi:10.1899/07-071.1.CrossRefGoogle Scholar
  48. Stewart, P. M., Butcher, J. T., & Swinford, T. O. (2000). Land use, habitat and water quality effects on macroinvertebrate communities in three watersheds of a Lake Michigan associated marsh system. Aquatic Ecosystem Health & Management, 3, 179–189. doi:10.1016/S1463-4988(99)00058-5.CrossRefGoogle Scholar
  49. Tomanova, S., Goitia, E., & Helesic, J. (2006). Trophic levels and functional feeding groups of macroinvertebrates in neotropical streams. Hydrobiologia, 556, 251–264. doi:10.1007/s10750-005-1255-5.CrossRefGoogle Scholar
  50. Veitenheimer-Mendes, I. L., & Silva, M. C. P. (2004). Moluscos límnicos do Rio Grande do Sul: Reconhecendo gêneros de Bivalvia e Gastropoda. Porto Alegre: UFRGS.Google Scholar
  51. Vondracek, B., Blann, K. L., Cox, C. B., Nerbonne, J. F., Mumford, K. G., & Nerbonne, B. A. (2005). Land use, spatial scale, and stream systems: Lessons from an agriculture region. Environmental Management, 36, 775–791. doi:10.1007/s00267-005-0039-z.CrossRefGoogle Scholar
  52. Zalidis, G., Stamatiadis, S., Takavakoglou, V., Eskridge, K., & Misopolinos, N. (2002). Impacts of agricul tural practices on soil and water quality in the Mediterranean region and proposed assessment methodology. Agriculture Ecosystems & Environment, 88, 137–146. doi:10.1016/S0167-8809(01)00249-3.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Departamento de Ciências BiológicasUniversidade Regional Integrada do Alto Uruguai e das Missões—Campus de ErechimErechimBrazil
  2. 2.Departamento de BiologiaUniversidade Federal de Santa MariaSanta MariaBrazil

Personalised recommendations