Environmental Monitoring and Assessment

, Volume 157, Issue 1–4, pp 137–149 | Cite as

Evaluating the condition of a mangrove forest of the Mexican Pacific based on an estimated leaf area index mapping approach

  • J. M. Kovacs
  • J. M. L. King
  • F. Flores de Santiago
  • F. Flores-Verdugo
Article

Abstract

Given the alarming global rates of mangrove forest loss it is important that resource managers have access to updated information regarding both the extent and condition of their mangrove forests. Mexican mangroves in particular have been identified as experiencing an exceptional high annual rate of loss. However, conflicting studies, using remote sensing techniques, of the current state of many of these forests may be hindering all efforts to conserve and manage what remains. Focusing on one such system, the Teacapán–Agua Brava–Las Haciendas estuarine–mangrove complex of the Mexican Pacific, an attempt was made to develop a rapid method of mapping the current condition of the mangroves based on estimated LAI. Specifically, using an AccuPAR LP-80 Ceptometer, 300 indirect in situ LAI measurements were taken at various sites within the black mangrove (Avicennia germinans) dominated forests of the northern section of this system. From this sample, 225 measurements were then used to develop linear regression models based on their relationship with corresponding values derived from QuickBird very high resolution optical satellite data. Specifically, regression analyses of the in situ LAI with both the normalized difference vegetation index (NDVI) and the simple ration (SR) vegetation index revealed significant positive relationships [LAI versus NDVI (R2 = 0.63); LAI versus SR (R2 = 0.68)]. Moreover, using the remaining sample, further examination of standard errors and of an F test of the residual variances indicated little difference between the two models. Based on the NDVI model, a map of estimated mangrove LAI was then created. Excluding the dead mangrove areas (i.e. LAI = 0), which represented 40% of the total 30.4 km2 of mangrove area identified in the scene, a mean estimated LAI value of 2.71 was recorded. By grouping the healthy fringe mangrove with the healthy riverine mangrove and by grouping the dwarf mangrove together with the poor condition mangrove, mean estimated LAI values of 4.66 and 2.39 were calculated, respectively. Given that the former healthy group only represents 8% of the total mangrove area examined, it is concluded that this mangrove system, considered one of the most important of the Pacific coast of the Americas, is currently experiencing a considerable state of degradation. Furthermore, based on the results of this investigation it is suggested that this approach could provide resource managers and scientists alike with a very rapid and effective method for monitoring the state of remaining mangrove forests of the Mexican Pacific and, possibly, other areas of the tropics.

Keywords

Mangrove condition LAI Ceptometer QuickBird Mapping Monitoring Mexico 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alonso-Perez, F., Ruiz-Luna, A., Turner, J., Berlanga-Robles, C. A., & Mitchelson-Jacob, G. (2003). Land cover changes and impact of shrimp aquaculture on the landscape in the Ceuta coastal lagoon system, Sinaloa, Mexico. Ocean and Coastal Management, 46, 583–600. doi:10.1016/S0964-5691(03)00036-X.CrossRefGoogle Scholar
  2. Araujo, R. J., Jamarillo, J. C., & Snedaker, S. C. (1997). LAI and leaf size differences in two red mangrove forest types in South Florida. Bulletin of Marine Science, 60, 643–647.Google Scholar
  3. Asner, G. P., Braswell, B. H., Schimel, D. S., & Wessman, C. A. (1998). Ecological research needs from multiangle remote sensing data. Remote Sensing of Environment, 63, 155–165. doi:10.1016/S0034-4257(97)00139-9.CrossRefGoogle Scholar
  4. Asner, G. P., Scurlock, J. M. O., & Hicke, J. A. (2003). Global synthesis of leaf area index observations: Implications for ecological and remote sensing studies. Global Ecology and Biogeography, 12, 191–205. doi:10.1046/j.1466-822X.2003.00026.x.CrossRefGoogle Scholar
  5. Beland, M., Goita, K., Bonn, F., & Pham, T. T. H. (2006). Assessment of land-cover changes related to shrimp aquaculture using remote sensing data: A case study in the Giao Thuy District, Vietnam. International Journal of Remote Sensing, 27, 1491–1510. doi:10.1080/01431160500406888.CrossRefGoogle Scholar
  6. Berlanga-Robles, C. A., & Ruiz-Luna, A. (2002). Land use mapping and change detection in the coastal zone of northwest Mexico using remote sensing techniques. Journal of Coastal Research, 18, 514–522.Google Scholar
  7. Brondizio, E., Moran, E., Mausel, P., & Wu, Y. (1996). Land cover in the Amazon estuary: Linking of the thematic mapper with botanical and historical data. Photogrammetric Engineering and Remote Sensing, 62, 921–929.Google Scholar
  8. Clough, B. F., Ong, J. E., & Gong, W. K. (1997). Estimating leaf area index and photosynthetic production in canopies of the mangrove Rhizophora apiculata. Marine Ecology Progress Series, 159, 285–292. doi:10.3354/meps159285.CrossRefGoogle Scholar
  9. Clough, B. F., Tan, D. T., Phuong, D. X., & Buu, D. C. (2000). Canopy leaf area index and litter fall in stands of the mangrove Rhizophora apiculata of different age in the Mekong Delta, Vietnam. Aquatic Botany, 66, 311–320. doi:10.1016/S0304-3770(99)00081-9.CrossRefGoogle Scholar
  10. Dahdouh-Guebas, F., Van Hiel, E., Chan, J. C.-W., Jayatissa, L. P., & Koedam, N. (2005). Qualitative distinction of congeneric and introgressive mangrove species in mixed patchy forest assemblages using high spatial resolution remotely sensed imagery (IKONOS). Systematics and Biodiversity, 2, 113–119. doi:10.1017/S1477200004001422.CrossRefGoogle Scholar
  11. Flores-Verdugo, F. J. (1986). Ecología de los manglares y perfil de comunidades en los sistemas lagunares de Agua Brava y Marismas Nacionales, Nayarit. Technical Report, Consejo Nacional de Ciencia y Tecnologia (Clave PCECBNA-022068. Mexico City, Mexico).Google Scholar
  12. Flores-Verdugo, F. J., Gonzalez-Farias, F., Blanco-Correa, M., & Nunez-Pasten, A. (1997). The Teacapán–Agua Brava Marismas Nacionales mangrove ecosystem on the Pacific coast of Mexico. In B. Kjerfve, L. Drude, & E. H. S. Diop (Eds.), Mangrove ecosystem studies in Latin America and Africa (pp. 35–46). Paris: UNESCO.Google Scholar
  13. Fuente, G., & Carrera, E. (2005). Cambio de Uso del Suelo en la Zona Costera del Estado de Sinaloa. Final Report to United States Forest Service (Grant No. 03-DG-11132762-157, Mexico: Ducks Unlimited de Mexico, A.C., Garza Garcia, N.L.).Google Scholar
  14. Gao, J. (1998). A hybrid method toward accurate mapping of mangroves in a marginal habitat from SPOT multispectral data. International Journal of Remote Sensing, 19, 1887–1899. doi:10.1080/014311698215045.CrossRefGoogle Scholar
  15. Green, E. P., Clark, C. D., Mumby, P. J., Edwards, A. J., & Ellis, A. C. (1998). Remote sensing techniques for mangrove mapping. International Journal of Remote Sensing, 19, 935–956. doi:10.1080/014311698215801.CrossRefGoogle Scholar
  16. Green, E. P., Mumby, P. J., Alaisdair, E. J., Clark, C. D., & Ellis, A. C. (1997). Estimating leaf area index of mangroves from satellite data. Aquatic Botany, 58, 11–19. doi:10.1016/S0304-3770(97)00013-2.CrossRefGoogle Scholar
  17. Hernández-Cornejo, R., Koedam, N., Ruiz Luna, A., Troell, M., & Dahdouh-Guebas, F. (2005). Remote sensing and ethnobotanical assessment of the mangrove forest changes in the Navachiste–San Ignacio–Macapule lagoon complex, Sinaloa, Mexico. Ecology and Society, 10, 16.Google Scholar
  18. Hyer, E. J., & Goetz, S. J. (2004). Comparison and sensitivity analysis of instruments and radiometric methods for LAI estimation: Assessments from a boreal forest site. Agricultural and Forest Meteorology, 122, 157–174. doi:10.1016/j.agrformet.2003.09.013.CrossRefGoogle Scholar
  19. Jensen, J. R. (2007). Remote sensing of the environment: An earth resource perspective. Upper Saddle River, NJ: Pearson Education, Inc.Google Scholar
  20. Jensen, J. R., Lin, H., Yang, Y., Ramsey, E., Davis, B. A., & Thoemke, C. W. (1991). The measurement of mangrove characteristics in Southwest Florida using SPOT multispectral data. Geocarto International, 2, 13–21.CrossRefGoogle Scholar
  21. Kovacs, J. M. (1999). Assessing mangrove use at the local scale. Landscape and Urban Planning, 43, 201–208. doi:10.1016/S0169-2046(98)00106-6.CrossRefGoogle Scholar
  22. Kovacs, J. M. (2000). Perceptions of environmental change in a tropical coastal wetland. Land Degradation & Development, 11, 209–220. doi:10.1002/1099-145X(200005/06)11:3<209::AID-LDR378>3.0.CO;2-Y.CrossRefGoogle Scholar
  23. Kovacs, J. M., Flores-Verdugo, F., Wang, J., & Aspden, L. P. (2004). Estimating leaf area index of a degraded mangrove forest using high spatial resolution satellite data. Aquatic Botany, 80, 13–22. doi:10.1016/j.aquabot.2004.06.001.CrossRefGoogle Scholar
  24. Kovacs, J. M., Wang, J., & Blanco-Correa, M. (2001). Mapping mangrove disturbances using multi-date Landsat TM imagery. Environmental Management, 27, 763–776. doi:10.1007/s002670010186.CrossRefGoogle Scholar
  25. Kovacs, J. M., Wang, J., & Flores-Verdugo, F. (2005). Mapping mangrove leaf area index at the species level using IKONOS and LAI-2000 sensors. Estuarine, Coastal and Shelf Science, 62, 377–384. doi:10.1016/j.ecss.2004.09.027.CrossRefGoogle Scholar
  26. Lovelock, C. E., Feller, I. C., McKee, K. L., & Thompson, R. (2005). Variation in mangrove forest structure and sediment characteristics in Bocas del Toro, Panama. Caribbean Journal of Science, 41,456–464.Google Scholar
  27. Lugo, A. E., & Snedaker, S. C. (1974). The ecology of mangroves. Annual Review of Ecology and Systematics, 5, 39–64. doi:10.1146/annurev.es.05.110174.000351.CrossRefGoogle Scholar
  28. Mather, P. M. (1987). Computer processing of remotely-sensed images: An introduction. Toronto: Wiley.Google Scholar
  29. Muttitanon, W., & Tripathi, N. K. (2005). Land use/land cover changes in the coastal zone of Ban Don Bay, Thailand using Landsat TM data. International Journal of Remote Sensing, 26, 231–2323. doi:10.1080/01431160512331336610.CrossRefGoogle Scholar
  30. Pierce, L. L., & Running, S. W. (1988). Rapid estimation of coniferous forest leaf area index using a portable integrating radiometer. Ecology, 69, 1762–1767. doi:10.2307/1941154.CrossRefGoogle Scholar
  31. Ramsey, E., & Jensen, J. R. (1996). Remote sensing of mangrove wetlands: Relating canopy spectra to site-specific data. Photogrammetric Engineering and Remote Sensing, 62, 939–948.Google Scholar
  32. Pool, D. J., Snedaker, S. C., & Lugo, A. E. (1977). Structure of mangrove forests in Florida, PuertoRico, Mexico and Costa Rica. Biotropica, 9, 195–212. doi:10.2307/2387881.CrossRefGoogle Scholar
  33. Sherman, R. E., Fahey, T. J., & Martinez, P. (2003). Spatial patterns of biomass and aboveground net primary productivity in a mangrove ecosystem in the Dominican Republic. Ecosystems (New York, N.Y.), 6, 384–398. doi:10.1007/s10021-002-0191-8.Google Scholar
  34. Thu, P. M., & Populus, J. (2007). Status and changes of mangrove forest in Mekong Delta: Case study in Tra Vinh, Vietnam. Estuarine, Coastal and Shelf Science, 71, 98–109. doi:10.1016/j.ecss.2006.08.007.CrossRefGoogle Scholar
  35. Tong, P. H. S., Auda, Y., Populus, J., Aizpuru, M., Al-Habshi, A., & Blasco, F. (2004). Assessment from space of mangrove evolution in the Mekong Delta, in relation to extensive shrimp farming. International Journal of Remote Sensing, 25, 4795–4812. doi:10.1080/01431160412331270858.CrossRefGoogle Scholar
  36. Valiela, I., Boen, J. L., & York, J. K. (2001). Mangrove forests: One of the world’s threatened major tropical environments. Bioscience, 51, 807–815. doi:10.1641/0006-3568(2001)051[0807:MFOOTW]2.0.CO;2.CrossRefGoogle Scholar
  37. Wang, L., Sousa, W. P., & Gong, P. (2004a). Integration of object-based and pixel-based classification for mapping mangroves with IKONOS imagery. International Journal of Remote Sensing, 25, 5655–5668. doi:10.1080/014311602331291215.CrossRefGoogle Scholar
  38. Wang, L., Sousa, W. P., Gong, P., & Biging, G. S. (2004b). Comparison of IKONOS and QuickBird images for mapping mangrove species on the Caribbean coast of Panama. Remote Sensing of Environment, 91, 432–440. doi:10.1016/j.rse.2004.04.005.CrossRefGoogle Scholar
  39. Webb, E. L., Evangelista, M. A., & Robinson, J. A. (2000). Digital land-use classification using space-shuttle-acquired orbital photographs: A quantitative comparison with Landsat TM imagery of a coastal environment, Chanthaburi, Thailand. Photogrammetric Engineering and Remote Sensing, 66, 1439–1449.Google Scholar
  40. White, J. D., Running, S. W., Ramakrishna, N., Keane, R. E., & Ryan, K. C. (1997). Measurement and remote sensing of LAI in Rocky Mountain montane ecosystems. Canadian Journal of Forest Research, 27, 1714–1727. doi:10.1139/cjfr-27-11-1714.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • J. M. Kovacs
    • 1
  • J. M. L. King
    • 1
  • F. Flores de Santiago
    • 2
  • F. Flores-Verdugo
    • 3
  1. 1.Department of GeographyNipissing UniversityNorth BayCanada
  2. 2.Facultad de Ciencias MarinasUniversidad Autónoma de Baja CaliforniaBaja CaliforniaMéxico
  3. 3.Instituto del Ciencias del Mar y LimnologíaUniversidad Nacional Autónoma de MexicoMazatlánMéxico

Personalised recommendations