Advertisement

Environmental Monitoring and Assessment

, Volume 157, Issue 1–4, pp 105–112 | Cite as

Forecasts using Box–Jenkins models for the ambient air quality data of Delhi City

  • Pragati SharmaEmail author
  • Avinash Chandra
  • S. C. Kaushik
Article

Abstract

The monthly maximum of the 24-h average time-series data of ambient air quality—sulphur dioxide (SO2), nitrogen dioxide (NO2) and suspended particulate matter (SPM) concentration monitored at the six National Ambient Air Quality Monitoring (NAAQM) stations in Delhi, was analysed using Box–Jenkins modelling approach (Box et al. 1994). Univariate linear stochastic models were developed to examine the degree of prediction possible for situations where only the past record of pollutant data are available. In all, 18 models were developed, three for each station for each of the respective pollutant. The model evaluation statistics suggest that considerably satisfactory real-time forecasts of pollution concentrations can be generated using the Box–Jenkins approach. The developed models can be used to provide short-term, real-time forecasts of extreme air pollution concentrations for the Air Quality Control Region (AQCR) of Delhi City, India.

Keywords

Box–Jenkins models Linear stochastic models Time-series analysis Real-time forecasting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benarie, M. M. (1980). Urban air pollution modelling. London: The MIT Press.Google Scholar
  2. Benson, P. E. (1979). CALINE 3 A versatile dispersion model for predicting air pollutant levels near highways and arterial roads. Final report. FHWA/CA/TL-79/23. California Department of Transportation, Sacramento, CA.Google Scholar
  3. Benson, P. E. (1989). CALINE 4—a dispersion model for predicting air pollution concentrations near roadways. Final report. FHWA/CA/TL-84/15. California Department of Transportation, Sacramento, CA.Google Scholar
  4. Box, G. E. P., & Jenkins, G. M. (1970). Time series analysis: Forecasting and control (2nd edn.). San Francisco: Holden Day, 1976.Google Scholar
  5. Box, G. E. P., Jenkins, G. M., & Reinsel, G. C. (1994). Time series analysis: Forecasting and control (3rd edn.). Englewood Cliffs, NJ: Prentice Hall.Google Scholar
  6. Cats, G. J., & Holtslag, A. A. M. (1980). Prediction of air pollution frequency distribution—Part 1. The lognormal distribution. Atmospheric Environment, 14, 255–258. doi:10.1016/0004-6981(80)90285-1.CrossRefGoogle Scholar
  7. Chock, D. P. (1978). A simple line-source model for dispersion near roadways. Atmospheric Environment, 12, 823–829. doi:10.1016/0004-6981(78)90019-7.CrossRefGoogle Scholar
  8. Jakeman, A. J., Simpson, R. W., & Taylor, J. A. (1988). Modelling distributions of air pollutant concentrations - III. The hybrid deterministic-statistical distribution approach. Atmospheric Environment, 22, 163–174. doi:10.1016/0004-6981(88)90309-5.CrossRefGoogle Scholar
  9. Juda, K. (1989). Air pollution modelling. In P. N. Cheremisinoff (Ed.), Encyclopedia of environmental control technology, air pollution control (Vol. 2, pp. 83–134). Houston, TX, USA: Gulf Publishing Company.Google Scholar
  10. Marquardt, D. W. (1963). An algorithm for least square estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics, 11, 431–441. doi:10.1137/0111030.CrossRefGoogle Scholar
  11. Mills, T. C. (1991). Time series techniques for economists. Cambridge: Cambridge University Press.Google Scholar
  12. Nieuwstadt, F. T. M. (1980). Prediction of air pollution frequency distribution - II. The Gaussian plume model. Atmospheric Environment, 14, 259–265. doi:10.1016/0004–6981(80)90286–3.CrossRefGoogle Scholar
  13. Petersen, W. B. (1980). User’s Guide for HIWAY-2, highway air pollution model, 3–17, EPA-600/8–80–018. Environmental Science Research Laboratory, Office of Research and Development US Environmental Protection Agency, Research Tringle Park, NC, 27711.Google Scholar
  14. Raimondi, F. M., Rando, F., Vitale, M. C., & Calcara, A. M. V. (1997). Short-time fuzzy DAP predictor for air pollution due to vehicular traffic. In R. S. José & C. A. Brebbia (Eds.), Measurements and Modelling in Environmental Pollution. First International Conference on Environmental Pollution MMMEP 97 (pp. 189–200). Southampton, Boston: Computational Mechanics Publications.Google Scholar
  15. Rao, S. T., Sistla, G., Petersen, W. B., Irwin, J. S., & Turner, D. B. (1985). Evaluation of the performance of RAM with the regional air pollution study data base. Atmospheric Environment, 19, 229–245. doi:10.1016/0004-6981(85)90091-5.CrossRefGoogle Scholar
  16. Willmott, C. J. (1981). On the validation of models. Physical Geography, 2, 184–194.Google Scholar
  17. Willmott, C. J., Ackleson, S. G., Davis, R. E., Feddema, J. J., Klink, K. M., Legates, D. R., et al. (1985). Statistics for the evaluation and comparison of models. Journal of Geophysical Research, 90, 8995–9005. doi:10.1029/JC090iC05p08995.CrossRefGoogle Scholar
  18. Willmott, C. J., & Wicks, D. E. (1980). An empirical method for the spatial interpolation of monthly precipitation within California. Physical Geography, 1, 59–73.Google Scholar
  19. Zannetti, P. (1989). Simulating short-term, short-range air quality dispersion phenomena. In P. N. Cheremisinoff (Ed.), Encyclopedia of environmental control technology, air pollution control (Vol. 2, pp. 159–195). Houston, TX, USA: Gulf Publishing Company.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Pragati Sharma
    • 1
    Email author
  • Avinash Chandra
    • 1
  • S. C. Kaushik
    • 1
  1. 1.Centre for Energy StudiesIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations