Hurricane Katrina-induced forest damage in relation to ecological factors at landscape scale



Forest stand stability to strong winds such as hurricanes has been found to be associated with a number of forest, soil and topography factors. In this study, through applying geographic information system (GIS) and logit regression, we assessed effects of forest characteristics and site conditions on pattern, severity and probability of Hurricane Katrina disturbance to forests in the Lower Pearl River Valley, USA. The factors included forest type, forest coverage, stand density, soil great group, elevation, slope, aspect, and stream buffer zone. Results showed that Hurricane Katrina damaged 60% of the total forested land in the region. The distribution and intensity of the hurricane disturbance varied across the landscape, with the bottomland hardwood forests on river floodplains most severely affected. All these factors had a variety of effects on vulnerability of the forests to the hurricane disturbance and thereby spatial patterns of the disturbance. Soil groups and stand factors including forest types, forest coverage and stand density contributed to 85% of accuracy in modeling the probability of the hurricane disturbance to forests in this region. Besides assessment of Katrina’s damage, this study elucidates the great usefulness of remote sensing and GIS techniques combined with statistics modeling in assessment of large-scale risks of hurricane damage to coastal forests.


Forest disturbance Stand stability Windthrow Landscape Hurricane Katrina Remote sensing Geographic information system 


  1. Ayala-Silva, T., & Twumasi, Y. A. (2004). Hurricane Georges and vegetation change in Puerto Rico using AVHRR satellite data. International Journal of Remote Sensing, 25, 1629–1640. doi:10.1080/01431160412331291251.CrossRefGoogle Scholar
  2. Bellingham, P. J. (1991). Landforms influence patterns of hurricane damage-Evidence from Jamaican montane forests. Biotropica, 23, 427–433. doi:10.2307/2388262.CrossRefGoogle Scholar
  3. Boose, E. R., Foster, D. R., & Fluet, M. (1994). Hurricane impacts to tropical and temperate forest landscapes. Ecological Monographs, 64, 369–400. doi:10.2307/2937142.CrossRefGoogle Scholar
  4. Brokaw, N. V. L., & Grear, J. S. (1991). Forest structure before and after Hurricane Hugo at 3 elevations in the Luquillo Mountains, Puerto-Rico. Biotropica, 23, 386–392. doi:10.2307/2388256.CrossRefGoogle Scholar
  5. Brown, S., Gillespie, A. J. R., & Lugo, A. E. (1989). Biomass estimation methods for tropical forests with applications to forest inventory data. Forest Science, 35, 881–902.Google Scholar
  6. Chambers, J. L. (2006). Protecting coastal wetland forests: What can you do to help? Louisiana Agriculture, 49, 4–9.Google Scholar
  7. Cohen, W. B., & Spies, T. A. (1992). Estimating structural attributes of Douglas-fir Western Hemlock forest stands from Landsat and Spot imagery. Remote Sensing of Environment, 41, 1–17. doi:10.1016/0034-4257(92)90056-P.CrossRefGoogle Scholar
  8. Coutts, M. P. (1986). Components of tree stability in Sitka spruce on peaty gley soil. Forestry, 59, 173–197. doi:10.1093/forestry/59.2.173.CrossRefGoogle Scholar
  9. Crist, E. P., & Cicone, R. C. (1984). A physically-based transformation of Thematic Mapper data-the TM Tasseled Cap. IEEE Transactions on Geoscience and Remote Sensing, 22, 256–263. doi:10.1109/TGRS.1984.350619.CrossRefGoogle Scholar
  10. Everham, E. M., & Brokaw, N. V. L. (1996). Forest damage and recovery from catastrophic wind. Botanical Review, 62, 113–185. doi:10.1007/BF02857920.CrossRefGoogle Scholar
  11. Finnigan, J. J., & Brunet, Y. (1995). Turbulent airflow in forests on flat and hilly terrain. In M. P. Coutts, & J. Grace (Eds.), Wind and trees. Cambridge: Cambridge University Press.Google Scholar
  12. Foster, D. R., & Boose, E. R. (1992). Patterns of forest damage resulting from catastrophic wind in Central New-England, USA. Journal of Ecology, 80, 79–98. doi:10.2307/2261065.CrossRefGoogle Scholar
  13. Foster, D. R., Knight, D. H., & Franklin, J. F. (1998). Landscape patterns and legacies resulting from large, infrequent forest disturbances. Ecosystems (New York, N.Y.), 1, 497–510. doi:10.1007/s100219900046.Google Scholar
  14. Francis, J. K. (2000). Comparison of hurricane damage to several species of urban trees in San Juan, Puerto Rico. Journal of Arboriculture, 26, 189–197.Google Scholar
  15. Gardner, L. R., Michener, W. K., Williams, T. M., Blood, E. R., Kjerve, B., Smock, L. A., et al. (1992). Disturbance effects of hurricane Hugo on a pristine coastal landscape—North Inlet, South-Carolina, USA. Netherlands Journal of Sea Research, 30, 249–263. doi:10.1016/0077-7579(92)90063-K.CrossRefGoogle Scholar
  16. Glitzenstein, J. S., & Harcombe, P. A. (1988). Effects of the December 1983 tornado on forest vegetation of the Big Thicket, Southeast Texas, USA. Forest Ecology and Management, 25, 269–290. doi:10.1016/0378-1127(88)90092-8.CrossRefGoogle Scholar
  17. Gresham, C. A., Williams, T. M., & Lipscomb, D. J. (1991). Hurricane Hugo wind damage to southeastern United-States coastal forest tree species. Biotropica, 23, 420–426. doi:10.2307/2388261.CrossRefGoogle Scholar
  18. Imbert, D., Labbe, P., & Rousteau, A. (1996). Hurricane damage and forest structure in Guadeloupe, French West Indies. Journal of Tropical Ecology, 12, 663–680.CrossRefGoogle Scholar
  19. Johnson, G. R., & Johnson, B. (1999). Storm damage to landscape trees: Prediction, prevention, treatment. Accessed 6 Sept. 2006.
  20. Keim, B. D., Faiers, G. E., Muller, R. A., Grymes, J. M., & Rohli, R. V. (1995). Long-term trends of precipitation and runoff in Louisiana, USA. International Journal of Climatology, 15, 531–541. doi:10.1002/joc.3370150505.CrossRefGoogle Scholar
  21. Knabb, R. D., Rhome, J. R., & Brown, D. P. (2006). Tropical cyclone report, Hurricane Katrina 23–30 August 2005. Accessed 5 May 2007.
  22. Lin, Y., Hulting, M. L., & Augspurger, C. K. (2004). Causes of spatial patterns of dead trees in forest fragments in Illinois. Plant Ecology, 170, 15–27. doi:10.1023/B:VEGE.0000019017.41546.eb.CrossRefGoogle Scholar
  23. Lindemann, J. D., & Baker, W. L. (2002). Using GIS to analyse a severe forest blowdown in the Southern Rocky Mountains. International Journal of Geographical Information Science, 16, 377–399. doi:10.1080/13658810210136069.CrossRefGoogle Scholar
  24. Lugo, A. E., Applefield, M., Pool, D. J., & Mcdonald, R. B. (1983). The impact of Hurricane David on the forests of Dominica. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 13, 201–211. doi:10.1139/x83-029.CrossRefGoogle Scholar
  25. Martin, T. J., & Ogden, J. (2006). Wind damage and response in New Zealand forests: A review. New Zealand Journal of Ecology, 30, 295–310.Google Scholar
  26. Mattheck, C., & Bethge, K. (1990). Wind breakage of trees initiated by root delamination. Trees-Structure and Function, 4, 225–227.Google Scholar
  27. Mayer, H. (1989). Windthrow. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 324, 267–281. doi:10.1098/rstb.1989.0048.CrossRefGoogle Scholar
  28. Mcgarigal, K., & Marks, B. J. (1995). FRAGSTATS: Spatial pattern analysis program for quantifying landscape structure. United States Department of Agriculture Pacific Northwest Research Station. Gen. Tech. Rep. PNW-GTR-351Google Scholar
  29. McMaster, K. J., (2005). Forest blowdown prediction: A correlation of remotely sensed contributing factors. Northern Journal of Applied Forestry, 22, 48–53.Google Scholar
  30. Nicoll, B. C., & Ray, D. (1996). Adaptive growth of tree root systems in response to wind action and site conditions. Tree Physiology, 16, 891–898.Google Scholar
  31. Nicoll, B. C., Gardiner, B. A., Rayner, B., & Peace, A. J. (2006). Anchorage of coniferous trees in relation to species, soil type, and rooting depth. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 36, 1871–1883. doi:10.1139/X06-072.CrossRefGoogle Scholar
  32. Ormsby, J. P., Choudhury, B. J., & Owe, M. (1987). Vegetation spatial variability and its effect on vegetation indices. International Journal of Remote Sensing, 8, 1301–1306. doi:10.1080/01431168708954775.CrossRefGoogle Scholar
  33. Ostertag, R., Silver, W. L., & Lugo, A. E. (2005). Factors affecting mortality and resistance to damage following hurricanes in a rehabilitated subtropical moist forest. Biotropica, 37, 16–24.Google Scholar
  34. Peterson, C. J. (2000). Catastrophic wind damage to North American forests and the potential impact of climate change. The Science of the Total Environment, 262, 287–311. doi:10.1016/S0048-9697(00)00529-5.CrossRefGoogle Scholar
  35. Purevdorj, T., Tateishi, R., Ishiyama, T., & Honda, Y. (1998). Relationships between percent vegetation cover and vegetation indices. International Journal of Remote Sensing, 19, 3519–3535. doi:10.1080/014311698213795.CrossRefGoogle Scholar
  36. Putz, F. E., & Sharitz, R. R. (1991). Hurricane damage to old-growth forest in Congaree Swamp National Monument, South-Carolina, USA. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 21, 1765–1770. doi:10.1139/x91–244.CrossRefGoogle Scholar
  37. Putz, F. E., Coley, P. D., Lu, K., Montalvo, A., & Aiello, A. (1983). Uprooting and snapping of trees—structural determinants and ecological consequences. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 13, 1011–1020. doi:10.1139/x83-133.CrossRefGoogle Scholar
  38. Ray, D., & Nicoll, B. C. (1998). The effect of soil water-table depth on root-plate development and stability of Sitka spruce. Forestry, 71, 169–182. doi:10.1093/forestry/71.2.169.CrossRefGoogle Scholar
  39. Reilly, A. E. (1991). The effects of Hurricane Hugo in 3 tropical forests in the United-States Virgin-Islands. Biotropica, 23, 414–419. doi:10.2307/2388260.CrossRefGoogle Scholar
  40. Reilly, J., Mayer, M., & Harnisch, J. (2002). The Kyoto Protocol and non-CO2 greenhouse gases and carbon sinks. Environmental Modeling and Assessment, 7, 217–229. doi:10.1023/A:1020910820102.CrossRefGoogle Scholar
  41. Rosson, J. F., Jr. (1995). Forest resources of Louisiana, 1991. F. S. U.S. Department of Agriculture, Southern Forest Experiment Station. Resour. Bull. SO-1, 92. New Orleans, Louisiana.Google Scholar
  42. SAS Institute Inc. (2006) SAS 9.1.3. Service Pack 4. Cary: SAS Institute Inc.Google Scholar
  43. Todd, S. W., & Hoffer, R. M. (1998). Responses of spectral indices to variations in vegetation cover and soil background. Photogrammetric Engineering and Remote Sensing, 64, 915–921.Google Scholar
  44. Touliatos, P., & Roth, E. (1971). Hurricanes and trees: Ten lessons from Camille. Journal of Forestry, 69, 285–289.Google Scholar
  45. Turner, D. P., Cohen, W. B., Kennedy, R. E., Fassnacht, K. S., & Briggs, J. M. (1999). Relationships between leaf area index and Landsat TM spectral vegetation indices across three temperate zone sites. Remote Sensing of Environment, 70, 52–68. doi:10.1016/S0034-4257(99)00057-7.CrossRefGoogle Scholar
  46. USDA Forest Service (2007). The forest inventory and analysis database: Database description and users guide version 2.1. National Forest Inventory and Analysis Program, U.S. Department of Agriculture, Forest Service, Southern Research Station.Google Scholar
  47. USGS. (2002). Environmental atlas of the Lake Pontchartrain basin.–206/env-overview/water-quality.html. Accessed 6 Sept. 2006.
  48. Van Bloem, S. J., Murphy, P. G., Lugo, A. E., Ostertag, R., Costa, M. R., Bernard, I. R., et al. (2005). The influence of hurricane winds on Caribbean dry forest structure and nutrient pools. Biotropica, 37, 571–583. doi:10.1111/j.1744-7429.2005.00074.x.CrossRefGoogle Scholar
  49. Walker, L. R. (1991). Tree damage and recovery from Hurricane Hugo in Luquillo Experimental Forest, Puerto-Rico. Biotropica, 23, 379–385. doi:10.2307/2388255.CrossRefGoogle Scholar
  50. Wang, F., & Xu, Y. J. (2007). Comparison of change detection techniques for assessing Hurricane Katrina damage to forests in Lower Pearl River Valley, USA. International Journal of Remote Sensing (in review).Google Scholar
  51. Wang, J., Rich, P. M., Price, K. P., & Kettle, W. D. (2004). Relations between NDVI and tree productivity in the central Great Plains. International Journal of Remote Sensing, 25, 3127–3138. doi:10.1080/0143116032000160499.CrossRefGoogle Scholar
  52. Xu, Y. J., Rohrig, E., & Folster, H. (1997). Reaction of root systems of grand fir (Abies grandis Lindl) and Norway spruce (Picea abies Karst) to seasonal waterlogging. Forest Ecology and Management, 93, 9–19. doi:10.1016/S0378-1127(96)03951-5.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.School of Renewable Natural ResourcesLouisiana State UniversityBaton RougeUSA

Personalised recommendations